首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   1篇
综合类   1篇
基础理论   1篇
污染及防治   3篇
社会与环境   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The aim of this study was to relate the results obtained by chemical methods, used to assess environmental (bio)availability, with the ecotoxic response and bioaccumulation of trace elements (TE) by the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils from a sulphide mine. The extracting solution 0.5 M NH4CH3COO, 0.5 M CH3COOH and 0.02 M EDTA (pH 4.7), was able to predict environmental bioavailability of TE to E. fetida. However, the toxicological bioavailability could not be predicted from the results of the chemical extractions or from the bioaccumulation results: E. fetida reproduction was higher in soils where environmental bioavailability of TE and bioaccumulation values were also higher. In this study, the toxic response of the organism seemed to be more influenced by the overall nutritional status of the soil (e.g. pH, organic matter, plant nutrient availability and cation exchange capacity) than by its TE contamination. In the case of anthropogenic multi-contaminated sites, the different soil characteristics exert an important and confounding influence in the toxic response and the relationship between different bioavailable fractions cannot be easily established, emphasising the need to combine results from chemical methods with those from bioassays when evaluating the bioavailability of TE in these soils.  相似文献   
2.
A greenhouse pot experiment was conducted to evaluate the effect of sewage sludge (SS), of sugar beet sludge (SBS), or of a combination of both, in the remediation of a highly acidic (pH 3.6) metal-contaminated soil, affected by mining activities. The SS was applied at 100 and 200 Mg ha(-1) (dry weight basis), and the SBS at 7 Mg ha(-1). All pots were sown with Italian ryegrass (Lolium multiflorum Lam.). After 60 d of growth, shoot biomass was quantified and analysed for Cu, Pb and Zn. The pseudo-total and bioavailable contents of Cu, Pb and Zn and the enzymatic activities of beta-glucosidase, acid phosphatase, cellulase, protease and urease were determined in the soil mixtures. Two indirect acute bioassays with leachates from the soil (luminescent inhibition of Vibrio fischeri and Daphnia magna immobilization) were also used. The SS, in particular when in combination with SBS, corrected soil acidity, while increasing the total organic matter content and the cation exchange capacity. The application of SS led to a decrease in the level of effective bioavailable metals (extracted by 0.01 M CaCl(2), pH 5.7, without buffer), but caused an increase in their potential bioavailability (extracted by a solution of 0.5M NH(4)CH(3)COO, 0.5 M CH(3)COOH and 0.01 M EDTA, pH 4.7). Plant biomass increased more than 10 times in the presence of 100 Mg SS ha(-1), and more than five times with the combined use of 100 Mg SS ha(-1) and SBS, but a considerable phytotoxic effect was observed for the application rate of 200 Mg SS ha(-1). Copper, Pb and Zn concentrations in the shoots of L. multiflorum decreased significantly when using 100 Mg SS ha(-1) or SBS. The activities of beta-glucosidase, urease and protease increased with increasing SS applications rates, but cellulase had a reduced activity when using 200 Mg ha(-1)SS. Both amendments were able to suppress soil toxicity to levels that did not affect D. magna, but increased the soil leachate toxicity towards V. fischeri, especially with the application of 200 Mg SS ha(-1). This study showed that for this type of mine soils, and when using SS of similar composition, the maximum SS application rate should be 100 Mg ha(-1), and that liming the SS amended soil with SBS did not contribute to a further improvement in soil quality.  相似文献   
3.
4.
The influence of the proportion of C- and N-rich raw materials (initial C/N ratio) and bulking agent on the chemical functional groups composition, humic-like substances (HS-like) content and physicochemical properties of composts was assessed. To achieve these goals, seven initial mixtures (BA1–6 and C1) of dog food (N-rich raw material) were composted with wheat flour (C-rich raw material). Composts were analyzed in terms of chemical functional groups, physicochemical, maturity and stability parameters.The C-rich raw material favored the formation of oxidized organic matter (OM) during the composting process, as suggested by the variation of the ratios of the peaks intensity of FT-IR spectra, corresponding to a decrease of the polysaccharides and an increase of aromatic and carboxyl-containing compounds. However, although with high proportion of C-rich raw material, mixtures with low initial C/N seems to have favored the accumulation of partially oxidized OM, which may have contributed to high electrical conductivity values in the final composts. Therefore, although favoring the partial transformation of OM into stabilized HS-like, initial mixtures with high proportion of C-rich raw material but with low initial C/N led to unstable composts.On the other hand, as long as a high percentage of bulking agent was used to promote the structure of biomass and consequently improve of the aeration conditions, low initial C/N was not a limiting factor of OM oxidation into extractable stabilized humic-like acids.  相似文献   
5.
The use of organic waste and compost as a source of organic matter and nutrients is a common practice to improve soil physico-chemical properties, meanwhile reducing the need for inorganic fertilisers. Official guidelines to assess sewage sludge and compost quality are mostly based on total metal content of these residues. Measurement of the total concentration of metals may be useful as a general index of contamination, but provides inadequate or little information about their bioavailability, mobility or toxicity when the organic residue is applied to the soil. However, ecotoxicity tests provide an integrated measure of bioavailability and detrimental effects of contaminants in the ecosystem. In the present study, three different types of biodegradable organic residues (BORs) have been considered: sewage sludge from municipal wastewater treatment (SS), compost from the organic fraction of unsorted municipal solid waste (MSWC), and garden waste compost (GWC). The BORs were subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn), in order to verify their suitability for land application. Water leachability was determined through the DIN 38414-S4 method, while the modified BCR sequential extraction procedure was used for metal speciation. Ecotoxicity of the BORs was studied by direct and indirect bioassays. Direct toxicity bioassays were: plant growth tests with cress (Lepidium sativum L.) and barley (Hordeum vulgare L.), and earthworm (Eisenia fetida) mortality. On the other hand, indirect exposure bioassays, with leachate from the residues, took into account: luminescent bacteria (Vibrio fischeri), seed germination (L. sativum and H. vulgare) and Daphnia magna immobilization. As far as total metal concentration is concerned, with particular reference to Zn, SS resulted neither suitable for the use in agriculture nor compatible to be disposed of as an inert material into landfill, according to the Directive 1999/31/EC. Zinc in SS was mainly present in exchangeable form (28.5%), appearing as highly bioavailable. As a consequence, SS exhibited either high ecotoxicity effects with the indirect exposure bioassays or significant mortality with the earthworm bioassay. Total content of metals in MSWC allowed its classification as "stabilised biowaste", according to 2nd draft [DG Env.A.2. Working document of Biological treatment of biowaste - 2nd draft. Directorate-General Environment, Brussels, 12th February; 2001. accessed in:http://europa.eu.int/comm/environment/waste/facts_en.htm, at 10/09/2002] while leachate, on the basis of the concentration of these contaminants, could be classified as "inert waste". This residue showed significant ecotoxicity effects with direct exposure bioassays as well as with the luminescent bacteria bioassay. However, it resulted less toxic than SS. Finally, GWC could be classified as a Class 2 compost, with no detectable toxic effects on the organisms used in the bioassays, except for the luminescent bacteria. In this case, an EC(50) of 73.0% was observed. Considering the results, the use of a battery of toxicity test in conjunction with chemical analysis should be suggested, in order to correctly assess possible environmental risks deriving from disposal or land application of biodegradable organic residues.  相似文献   
6.

Background, aim, and scope  

Selenium is a trace metalloid of global environmental concern. The boundary among its essentiality, deficiency, and toxicity is narrow and mainly depends on the chemical forms and concentrations in which this element occurs. Different plant species—including Brassica juncea—have been shown to play a significant role in Se removal from soil as well as water bodies. Furthermore, the interactions between such plants, showing natural capabilities of metal uptake and their rhizospheric microbial communities, might be exploited to increase both Se scavenging and vegetable biomass production in order to improve the whole phytoextraction efficiency. The aim of the present study was to evaluate the capability of selenite removal of B. juncea grown in hydroponic conditions on artificially spiked effluents. To optimize phytoextraction efficiency, interactions between B. juncea and rhizobacteria were designedly elicited.  相似文献   
7.
Evaluation of tests to assess the quality of mine-contaminated soils   总被引:1,自引:0,他引:1  
An acid metal-contaminated soil from the Aljustrel mining area (a pyrite mine located in SW Portugal in the Iberian Pyrite Belt) was subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn). Water-soluble metals were determined and a sequential extraction procedure was used to investigate metal speciation. Two bioavailable metal fractions were determined: a mobile fraction and a mobilisable fraction. Soil ecotoxicity was studied using a battery of bioassays: plant growth test and seed germination with cress (Lepidium sativum L.), earthworm (Eisenia fetida) mortality, E. fetida avoidance behaviour, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilisation. Although the total content of Cu, Zn and Pb in the soil was large (362, 245 and 1,250 mg/kg dry matter, respectively), these metals were mostly structurally bound (87% for Cu, 81% for Zn and 89% for Pb) and, therefore, scarcely bioavailable. Nonetheless, the D. magna immobilization test using soil leachate showed an EC50 (48 h) of 36.3% (v/v), and the luminescent inhibition of V. fischeri presented an EC20 (15 min) of 45.2% and an EC20 (30 min) of 10.7% (v/v), suggesting a considerable toxic effect. In the direct exposure bioassays, E. fetida avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). At the same soil concentrations, cress showed negligible growth. The results suggest the need to use a battery of toxicity tests, in conjunction with chemical methods, in order to assess the quality of mine-contaminated soils correctly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号