首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  国内免费   1篇
废物处理   1篇
环保管理   2篇
综合类   1篇
基础理论   2篇
污染及防治   17篇
评价与监测   6篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
The study is the first documentation of seasonal variations in species composition, abundance and diversity of tintinnid (Ciliata: Protozoa), in relation to water quality parameters along the stretch of the Hooghly (Ganges) River Estuary (HRE), eastern coastal part of India. A total of 26 species (22 agglomerated and 4 non-agglomerated) belonging to 8 genera has been identified from 8 study sites where Tintinnopsis (17 species) represented the most dominant genera, contributing up to 65 % of total tintinnid community followed by Tintinnidium (2 species), Leprotintinnus (2 species) and Dadayiella, Favella, Metacylis, Eutintinnus and Helicostomella (each with solitary species). The maximum (1,666 ind.?l?1) and minimum (62 ind.?l?1) abundance of tintinnids was recorded during post-monsoon and monsoon, respectively. A distinct seasonal dynamics in terms of biomass (0.005–2.465 μg C l?1) and daily production rate (0.04–3.13 μg C l?1 day?1) was also noticed, accounting highest value during pre-monsoon. Chlorophyll a and nitrate were found to be potential causative factors for the seasonal variations of tintinnids as revealed by a stepwise multiple regression model. The result of ANOVA showed a significant variation between species abundance and months (F?=?2.36, P?≤?0.05). k-dominance curves were plotted to determine the comparison of tintinnid dominance between the investigated stations. Based on a principal component analysis (PCA), three main groups were delineated with tintinnid ciliates and environmental parameters. The changes in lorica morphology in terms of temperature and salinity, recorded for three dominant species, provided information on the ecological characteristics of the species assemblage in this estuarine system.  相似文献   
2.

Background, aim, and scope  

Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants.  相似文献   
3.
An incubation study was designed to modify the existing in vitro methods to increase the accuracy in estimation of bioavailable arsenic in pesticide-applied soils. In addition to simulating arsenic dissolution in gastric and intestinal solutions, absorbtion by the intestinal membrane was also mimicked using iron-oxide coated filter paper strips inserted in nylon bags. The in vitro experiments were sequentially performed in two phases, namely, the stomach phase and the absorbed-intestinal phase. Arsenic extraction in the in vitro absorbed intestinal phase increased, thereby making it more comparable to the potential in vivo arsenic pool. While animal studies are needed to verify the in vitro results, preliminary data indicate that this modified method may be able to improve site-specific bioavailability predictions in arsenic-contaminated soils.  相似文献   
4.

Background, aim, and scope  

Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS).  相似文献   
5.
The efficiency of vetiver grass (Vetiveria zizanioides) in removing 2,4,6-trinitrotoluene (TNT) from aqueous media was explored in the presence of a common agrochemical, urea, used as a chaotropic agent. Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), thus, enhancing plant TNT uptake. The primary objectives of this study were to: (i) characterize TNT absorption by vetiver in hydroponic media, and (ii) determine the effect of urea on chemically catalyzing TNT uptake by vetiver grass in hydroponic media. Results showed that vetiver exhibited a high TNT uptake capacity (1.026 mgg(-1)), but kinetics were slow. Uptake was considerably enhanced in the presence of urea, which significantly (p<0.001) increased the 2nd-order reaction rate constant over that of the untreated (no urea) control. Three major TNT metabolites were detected in the roots, but not in the shoot, namely 1,3,5-trinitrobenzene, 4-amino 2,6-dinitrotoluene, and 2-amino 4,6-dinitrotoluene, indicating TNT degradation by vetiver grass.  相似文献   
6.
Bioaccumulation and physiological effects of mercury in Sesbania drummondii   总被引:1,自引:0,他引:1  
Israr M  Sahi S  Datta R  Sarkar D 《Chemosphere》2006,65(4):591-598
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.  相似文献   
7.
Mining operations result in a wide range of environmental impacts: acid mine drainage (AMD) and acid sulfate soils being among the most common. Due to their acidic pH and high soluble metal concentrations, both AMD and acid sulfate soils can severely damage the local ecosystems. Proper post‐mining management practices are necessary to control AMD‐related environmental issues. Current AMD‐impacted soil treatment technologies are rather expensive and typically not environmentally sustainable. We conducted a 60‐day bench‐scale study to evaluate the potential of a cost‐effective and environment‐friendly technology in treating AMD‐impacted soils. The metal binding and acid‐neutralizing capacity of an industrial by‐product, drinking water treatment residuals (WTRs) were used for AMD remediation. Two types of locally generated WTRs, an aluminum‐based WTR (Al‐WTR) and a lime‐based WTR (Ca‐WTR) were used. Highly acidic AMD‐impacted soil containing very high concentrations of metals and metalloids, such as iron, nickel, and arsenic, was collected from the Tab‐Simco coal mine in Carbondale, Illinois. Soil amendment using a 1:1 Al‐ and Ca‐WTR mix, applied at 5 and 10 percent rates significantly lowered the soluble and exchangeable fractions of metals in the AMD‐impacted soil, thus lowering potential metal toxicity. Soil pH increased from an extremely acidic 2.69 to a near‐neutral 6.86 standard units over the 60‐day study period. Results from this preliminary study suggest the possibility of a successful scale‐up of this innovative, cost‐effective, and environmentally sustainable technology for remediating AMD‐impacted acid sulfate soils.  相似文献   
8.
Prediction models for exchangeable soil lead, published earlier in this journal (Andra et al. 2010a), were developed using a suite of native lead (Pb) paint-contaminated residential soils from two US cities heavily populated with homes constructed prior to Pb ban in paints. In this study, we tested the feasibility and practical applications of these prediction models for developing a phytoremediation design using vetiver grass (Vetiveria zizanioides), a Pb-tolerant plant. The models were used to estimate the exchangeable fraction of Pb available for vetiver uptake in four lead-spiked soil types, both acidic and alkaline, with varying physico-chemical properties and that are different from those used to build the prediction models. Results indicate a strong correlation for predictable exchangeable Pb with the observed fraction and as well with total Pb accumulated by vetiver grass grown in these soils. The correlation coefficient for the predicted vs. observed exchangeable Pb with p < 0.001 was 0.999, 0.996, 0.949, and 0.998 in the Immokalee, Millhopper, Pahokee Muck, and Tobosa soil type, respectively. Similarly, the correlation coefficient for the predicted exchangeable Pb vs. accumulated Pb in vetiver grass with p?< 0.001 was 0.948, 0.983, 0.929, and 0.969 for each soil type, respectively. This study suggests that the success of a phytoremediation design could be assessed upfront by predicting the exchangeable Pb fraction in a given soil type based on its properties. This helps in modifying the soil conditions to enhance phytoextraction of Pb from contaminated soils.  相似文献   
9.
Environmental and Ecological Statistics - We consider the problem of estimating the mean function from a pair of paleoclimatic functional data sets after one of them has been registered with the...  相似文献   
10.
Sarkar D  Datta R  Sharma S 《Chemosphere》2005,60(2):188-195
A laboratory incubation study was conducted to estimate geochemical speciation and in vitro bioavailability of arsenic as a function of soil properties. Two chemically-variant soil types were chosen, based on their potential differences with respect to arsenic reactivity: an acid sand with minimal arsenic retention capacity and a sandy loam with relatively high concentration of amorphous Fe/Al-oxides, considered a sink for arsenic. The soils were amended with dimethylarsenic acid (DMA) at three rates: 45, 225, and 450 mg/kg. A sequential extraction scheme was employed to identify the geochemical forms of arsenic in soils, which were correlated with the "in vitro" bioavailable fractions of arsenic to identify the most bioavailable species. Arsenic bioavailability and speciation studies were done at 0 time (immediately after spiking the soils with pesticide) and after four-months incubation. Results show that soil properties greatly impact geochemical speciation and bioavailability of DMA; soils with high concentrations of amorphous Fe/Al oxides retain more arsenic, thereby rendering them less bioavailable. Results also indicate that the use of organic arsenicals as pesticides in mineral soils may not be a safe practice from the viewpoint of human health risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号