首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   4篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
Abstract: Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest‐dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan‐European scale. We used meta‐analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management‐intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta‐analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.  相似文献   
2.
Abstract:  Habitat fragmentation is the transformation of once-extensive landscapes into smaller, isolated remnants surrounded by new types of habitat. There is ample evidence of impoverished biodiversity as a consequence of habitat fragmentation, but its most profound effects may actually result from functional changes in ecological processes such as trophic interactions. We studied the trophic processes of herbivory and parasitism in insect-plant food webs composed of hundreds of species in a fragmented woodland landscape. We recorded all plant species, collected mined leaves, and reared leafminers and parasitoids from 19 woodland remnants. Herbivory and parasitism rates were then analyzed in relation to woodland size and edge or interior location. Herbivory by leaf-mining insects and their overall parasitism rates decreased as woodland remnants became smaller. For each remnant the intensity of both processes differed between edge and interior. Our results provide novel evidence of the magnitude of habitat fragmentation effects, showing they can be so pervasive as to affect trophic processes of highly complex food webs and suggesting a response associated with trophic specialization of the involved organisms as much as with their trophic level.  相似文献   
3.
4.
Abstract:  Not all species are likely to be equally affected by habitat fragmentation; thus, we evaluated the effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects, and their parasitoids. We explored the possibility of differential vulnerability to habitat area reduction in relation to species-specific and food-web traits by comparing species–area regression slopes. Moreover, we searched for a synergistic effect of these traits and of trophic level . We collected mined leaves and recorded plant, leaf miner, and parasitoid species interactions in five 100-m2 transects in 19 Chaco Serrano woodland remnants in central Argentina. Species were classified into extreme categories according to body size, natural abundance, trophic breadth, and trophic level . Species–area slopes differed between groups with extreme values of natural abundance or trophic specialization. Nevertheless, synergistic effects of life-history and food-web traits were only found for trophic level and trophic breadth: area-related species loss was highest for specialist parasitoids. It has been suggested that species position within interaction webs could determine their vulnerability to extinction. Our results provide evidence that food-web parameters, such as trophic level and trophic breadth, affect species sensitivity to habitat fragmentation .  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号