首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
环保管理   2篇
基础理论   43篇
评价与监测   1篇
灾害及防治   1篇
  2014年   4篇
  2013年   4篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有47条查询结果,搜索用时 109 毫秒
1.
Abstract: Maintenance of viable populations of many endangered species will require conservation action in perpetuity. Efforts to conserve these species are more likely to be successful if their reliance on conservation actions is assessed at the population level. Woodland caribou (Rangifer tarandus caribou) were extirpated recently from Banff National Park, Canada, and translocations of caribou to Banff and neighboring Jasper National Park are being considered. We used population viability analysis to assess the relative need for and benefits from translocation of individuals among caribou populations. We measured stochastic growth rates and the probability of quasi extinction of four populations of woodland caribou with and without translocation. We used two vital rates in our analysis: mean adult female survival and mean number of calves per breeding‐age female as estimates of mean fecundity. We isolated process variance for each vital rate. Our results suggested the Tonquin caribou population in Jasper is likely to remain viable without translocation, but that translocation is probably insufficient to prevent eventual extirpation of the two other populations in Jasper. Simulated reintroductions of caribou into Banff resulted in a 53–98% probability of >8 females remaining after 20 years, which suggests translocation may be an effective recovery tool for some caribou populations.  相似文献   
2.
Abstract:  Effective detection of population trend is crucial for managing threatened species. Little theory exists, however, to assist managers in choosing the most cost-effective monitoring techniques for diagnosing trend. We present a framework for determining the optimal monitoring strategy by simulating a manager collecting data on a declining species, the Chestnut-rumped Hylacola ( Hylacola pyrrhopygia parkeri ), to determine whether the species should be listed under the IUCN (World Conservation Union) Red List. We compared the efficiencies of two strategies for detecting trend, abundance, and presence–absence surveys, under financial constraints. One might expect the abundance surveys to be superior under all circumstances because more information is collected at each site. Nevertheless, the presence–absence data can be collected at more sites because the surveyor is not obliged to spend a fixed amount of time at each site. The optimal strategy for monitoring was very dependent on the budget available. Under some circumstances, presence–absence surveys outperformed abundance surveys for diagnosing the IUCN Red List categories cost-effectively. Abundance surveys were best if the species was expected to be recorded more than 16 times/year; otherwise, presence–absence surveys were best. The relationship between the strategies we investigated is likely to be relevant for many comparisons of presence–absence or abundance data. Managers of any cryptic or low-density species who hope to maximize their success of estimating trend should find an application for our results.  相似文献   
3.
Abstract:  Ecologists and economists both use models to help develop strategies for biodiversity management. The practical use of disciplinary models, however, can be limited because ecological models tend not to address the socioeconomic dimension of biodiversity management, whereas economic models tend to neglect the ecological dimension. Given these shortcomings of disciplinary models, there is a necessity to combine ecological and economic knowledge into ecological-economic models. It is insufficient if scientists work separately in their own disciplines and combine their knowledge only when it comes to formulating management recommendations. Such an approach does not capture feedback loops between the ecological and the socioeconomic systems. Furthermore, each discipline poses the management problem in its own way and comes up with its own most appropriate solution. These disciplinary solutions, however, are likely to be so different that a combined solution considering aspects of both disciplines cannot be found. Preconditions for a successful model-based integration of ecology and economics include (1) an in-depth knowledge of the two disciplines, (2) the adequate identification and framing of the problem to be investigated, and (3) a common understanding between economists and ecologists of modeling and scale. To further advance ecological-economic modeling the development of common benchmarks, quality controls, and refereeing standards for ecological-economic models is desirable.  相似文献   
4.
Abstract:  Selecting reserve areas based on percentages, such as 10% or 12% of a bioregion, is common in conservation planning despite widespread admission that such percentages are arbitrary and likely to be inadequate for the conservation of all biodiversity. Reserve systems based on these relatively low percentage targets are likely to require expansion in the future, resulting in the assembly of reserve systems over many years (incremental reserve design). How then will incremental reserve design, such as increasing percentage targets over time, affect the long-term efficiency of marine reserve systems? We used South Australia as a case study to investigate how changing percentage targets affects the contribution of individual planning units to efficient reserve design. Selection frequency counts provided a measure of a planning unit's conservation value. For the majority of planning units, changing targets led to a change in their conservation value indicating, for example, that planning units identified as high-value sites at a low-percentage conservation target may be of lesser importance when targets are increased. Despite the variability in the value of individual planning units at different targets, there was no loss in efficiency from incremental design of reserve systems based on systematic methods compared with purpose-built reserve systems (i.e., the system is assembled in a single iteration). The exception was when incrementally designed systems were based on South Australia's existing marine reserve system—a system developed in an ad hoc method. The result was reserve systems that were less efficient, less compact, and larger in size. This suggests that systematic approaches have an important role for efficient reserve design when there is uncertainty about the target level of reservation .  相似文献   
5.
Active Adaptive Management for Conservation   总被引:4,自引:0,他引:4  
Abstract:  Active adaptive management balances the requirements of management with the need to learn about the system being managed, which leads to better decisions. It is difficult to judge the benefit of management actions that accelerate information gain, relative to the benefit of making the best management decision given what is known at the time. We present a first step in developing methods to optimize management decisions that incorporate both uncertainty and learning via adaptive management. We assumed a manager can allocate effort to discrete units (e.g., areas for revegetation or animals for reintroduction), the outcome can be measured as success or failure (e.g., the revegetation in an area is successful or the animal survives and breeds), and the manager has two possible management options from which to choose. We further assumed that there is an annual budget that may be allocated to one or both of the two options and that the manager must decide on the allocation. We used Bayesian updating of the probability of success of the two options and stochastic dynamic programming to determine the optimal strategy over a specified number of years. The costs, level of certainty about the success of the two options, and the timeframe of management all influenced the optimal allocation of the annual budget. In addition, the choice of management objective had a large influence on the optimal decision. In a case study of Merri Creek, Melbourne, Australia, we applied the approach to determining revegetation strategies. Our approach can be used to determine how best to manage ecological systems in the face of uncertainty.  相似文献   
6.
Abstract:  Uncertainty in the implementation and outcomes of conservation actions that is not accounted for leaves conservation plans vulnerable to potential changes in future conditions. We used a decision-theoretic approach to investigate the effects of two types of investment uncertainty on the optimal allocation of global conservation resources for land acquisition in the Mediterranean Basin. We considered uncertainty about (1) whether investment will continue and (2) whether the acquired biodiversity assets are secure, which we termed transaction uncertainty and performance uncertainty, respectively. We also developed and tested the robustness of different rules of thumb for guiding the allocation of conservation resources when these sources of uncertainty exist. In the presence of uncertainty in future investment ability (transaction uncertainty), the optimal strategy was opportunistic, meaning the investment priority should be to act where uncertainty is highest while investment remains possible. When there was a probability that investments would fail (performance uncertainty), the optimal solution became a complex trade-off between the immediate biodiversity benefits of acting in a region and the perceived longevity of the investment. In general, regions were prioritized for investment when they had the greatest performance certainty, even if an alternative region was highly threatened or had higher biodiversity value. The improved performance of rules of thumb when accounting for uncertainty highlights the importance of explicitly incorporating sources of investment uncertainty and evaluating potential conservation investments in the context of their likely long-term success.  相似文献   
7.
Abstract: Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget‐limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator–prey model based on a Lotka‐Volterra system to investigate the cost‐effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed‐number control), removal of a constant proportion of predators (fixed‐rate control), removal of predators that exceed a predetermined threshold (upper‐trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower‐trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed‐number, and lower‐trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper‐trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper‐trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the “best” strategy when financial resources are limited and eradication is unlikely.  相似文献   
8.
9.
Abstract:  The Great Barrier Reef Marine Park, an area almost the size of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per "bioregion," minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 km across at the smallest diameter. Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection was inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of the above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency priority and ownership; and being able to address the issue of displaced fishers.  相似文献   
10.
Abstract:  Although feral animal management is often based on the proposition that introduced species threaten ecological and conservation values, that view is not necessarily shared by all stakeholders, including those indigenous people who own and co-manage Kakadu National Park with Australia's federal government. Drawing on field-based interviews with the Jawoyn people, we found that these indigenous people categorize water buffalo (  Bubalus bubalis ) as an important food source (tucker), view horses (  Equus caballus ) as bush pets, and consider pigs (  Sus scrofa ) a threat to their lands. As a result, Jawoyn people want more water buffalo in the park, have high tolerance of environmental damage caused by horses, and are open to the idea that pig population densities should be reduced. Jawoyn also advocate an adaptive and participatory approach to feral animal control so that the consequences of any management actions can be properly understood before irrevocable change occurs. These findings highlight one example of how indigenous people's ecological knowledge has adapted in response to changing landscapes and community aspirations. Co-management strategies that aim to incorporate the dynamics of indigenous people's views need to start with issues on which there is agreement between different groups and take a cautious approach to joint exploration of more contentious issues. That approach should include ongoing and on-site monitoring so that the consequences of management actions can be properly understood and comprehensively negotiated by all parties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号