首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
基础理论   5篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   
2.
When looking for the best course of management decisions to efficiently conserve metapopulation systems, a classic approach in the ecology literature is to model the optimisation problem as a Markov decision process and find an optimal control policy using exact stochastic dynamic programming techniques. Stochastic dynamic programming is an iterative procedure that seeks to optimise a value function at each timestep by evaluating the benefits of each of the actions in each state of the system defined in the Markov decision process.Although stochastic dynamic programming methods provide an optimal solution to conservation management questions in a stochastic world, their applicability in metapopulation problems has always been limited by the so-called curse of dimensionality. The curse of dimensionality is the problem that adding new state variables inevitably results in much larger (often exponential) increases in the size of the state space, which can make solving superficially small problems impossible. The high computational requirements of stochastic dynamic programming methods mean that only simple metapopulation management problems can be analysed. In this paper we overcome the complexity burden of exact stochastic dynamic programming methods and present the benefits of an on-line sparse sampling algorithm proposed by Kearns, Mansour and Ng (2002). The algorithm is particularly attractive for problems with large state spaces as the running time is independent of the size of the state space of the problem. This appealing improvement is achieved at a cost: the solutions found are no longer guaranteed to be optimal.We apply the algorithm of Kearns et al. (2002) to a hypothetical fish metapopulation problem where the management objective is to maximise the number of occupied patches over the management time horizon. Our model has multiple management options to combat the threats of water abstraction and waterhole sedimentation. We compare the performance of the optimal solution to the results of the on-line sparse sampling algorithm for a simple 3-waterhole case. We find that three look-ahead steps minimises the error between the optimal solution and the approximation algorithm. This paper introduces a new algorithm to conservation management that provides a way to avoid the effects of the curse of dimensionality. The work has the potential to allow us to approximate solutions to much more complex metapopulation management problems in the future.  相似文献   
3.
As declines in biodiversity accelerate, there is an urgent imperative to ensure that every dollar spent on conservation counts toward species protection. Systematic conservation planning is a widely used approach to achieve this, but there is growing concern that it must better integrate the human social dimensions of conservation to be effective. Yet, fundamental insights about when social data are most critical to inform conservation planning decisions are lacking. To address this problem, we derived novel principles to guide strategic investment in social network information for systematic conservation planning. We considered the common conservation problem of identifying which social actors, in a social network, to engage with to incentivize conservation behavior that maximizes the number of species protected. We used simulations of social networks and species distributed across network nodes to identify the optimal state-dependent strategies and the value of social network information. We did this for a range of motif network structures and species distributions and applied the approach to a small-scale fishery in Kenya. The value of social network information depended strongly on both the distribution of species and social network structure. When species distributions were highly nested (i.e., when species-poor sites are subsets of species-rich sites), the value of social network information was almost always low. This suggests that information on how species are distributed across a network is critical for determining whether to invest in collecting social network data. In contrast, the value of social network information was greatest when social networks were highly centralized. Results for the small-scale fishery were consistent with the simulations. Our results suggest that strategic collection of social network data should be prioritized when species distributions are un-nested and when social networks are likely to be centralized.  相似文献   
4.
Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species‐centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator–prey interactions. Using simulation‐based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional‐response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short‐term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana  相似文献   
5.
Biodiversity conservation decisions are difficult, especially when they involve differing values, complex multidimensional objectives, scarce resources, urgency, and considerable uncertainty. Decision science embodies a theory about how to make difficult decisions and an extensive array of frameworks and tools that make that theory practical. We sought to improve conceptual clarity and practical application of decision science to help decision makers apply decision science to conservation problems. We addressed barriers to the uptake of decision science, including a lack of training and awareness of decision science; confusion over common terminology and which tools and frameworks to apply; and the mistaken impression that applying decision science must be time consuming, expensive, and complex. To aid in navigating the extensive and disparate decision science literature, we clarify meaning of common terms: decision science, decision theory, decision analysis, structured decision-making, and decision-support tools. Applying decision science does not have to be complex or time consuming; rather, it begins with knowing how to think through the components of a decision utilizing decision analysis (i.e., define the problem, elicit objectives, develop alternatives, estimate consequences, and perform trade-offs). This is best achieved by applying a rapid-prototyping approach. At each step, decision-support tools can provide additional insight and clarity, whereas decision-support frameworks (e.g., priority threat management and systematic conservation planning) can aid navigation of multiple steps of a decision analysis for particular contexts. We summarize key decision-support frameworks and tools and describe to which step of a decision analysis, and to which contexts, each is most useful to apply. Our introduction to decision science will aid in contextualizing current approaches and new developments, and help decision makers begin to apply decision science to conservation problems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号