首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
评价与监测   2篇
社会与环境   1篇
  2014年   3篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Mercury in the Mediterranean,part I: spatial and temporal trends   总被引:1,自引:0,他引:1  
The present paper provides an overview of mercury studies performed in the Mediterranean Sea region in the framework of several research projects funded by the European Commission and on-going national programmes carried out during the last 15 years. These studies investigated the temporal and spatial distribution of mercury species in air, in the water column and sediments, and the transport mechanisms connecting them. It was found that atmospheric concentrations of Hg compounds, particularly oxidised Hg species observed at five coastal sites in the Mediterranean Sea Basin, are significantly higher compared with those recorded at five coastal sites distributed across N Europe, most probably due to natural emissions. Hg levels in water are comparable to other oceans. Anthropogenic and natural point sources show locally limited enrichments, while natural diffusive sources influence Hg speciation over larger areas. Results and statistic comparison of mercury species concentrations within Mediterranean compartments will be presented and discussed.  相似文献   
2.
Mass balance of contaminants can provide useful information on the processes that influence their concentrations in various environmental compartments. The most important sources, sinks and the equilibrium or non-equilibrium state of the contaminant in individual environmental compartments can also be identified. Using the latest mercury speciation data, the results of numerical models and the results of recent studies on mercury transport and transformation processes in the marine environment, we have re-evaluated the total mercury (HgT) mass balance in the Mediterranean Sea. New calculations have been performed employing three distinct marine layers: the surface layer, the thermocline and the deep sea. New transport mechanisms, deep water formation and density-driven sinking and upwelling, were included in the mass balance calculations. The most recent data have even enabled the calculation of an approximate methylmercury (MeHg) mass balance. HgT is well balanced in the entire Mediterranean, and the discrepancies between inputs and outputs in individual layers do not exceed 20 %. The MeHg balance shows larger discrepancies between gains and losses due to measurement uncertainties and gaps in our knowledge of Hg species transformation processes. Nonetheless, the main sources and sinks of HgT (deposition and evasion) and MeHg (fluxes from sediment, outflow through the Gibraltar Strait) are in accordance with previous studies on mercury in the Mediterranean Basin. Mercury in the Mediterranean fish harvest is the second largest MeHg sink; about 300 kg of this toxic substance is consumed annually with sea food.  相似文献   
3.
Mercury (Hg) fractionation was investigated in contaminated soil in the Idrija Hg-mine region, Slovenia. The main aim of this study was to test and apply sequential extraction and quantification of different Hg phases in order to estimate the mobility and potential bioavailability of Hg in contaminated soils. Separation of Hg phases was performed by means of a selective sequential extraction procedure complemented by volatilization of elemental mercury (Hg0). The influence of temperature, moisture and storage on Hg0 volatilization was also investigated. The total Hg concentrations varied between 8.4 and 415 mg kg(-1) and were up to 40-fold higher than the maximum permissible set by Slovenian legislation. Fractionation measurements indicated cinnabar as the predominant Hg fraction, followed by Hg0. Accumulation of cinnabar predominantly occurred in coarse grained flood plain sediments, where on average it constituted more than 80% of total Hg. In contrast non-cinnabar fractions were found to be enriched in areas where fine grained material was deposited, reaching up to 60% of total Hg. The strong positive correlation (R2 = 0.71-0.99) among non-cinnabar fractions suggested that these fractions predominantly control the mobility and potential bioavailability of Hg. Sample pretreatment before fractionation influenced the partition of Hg between different fractions, and therefore fractionation in fresh, nontreated samples is suggested. In addition, the specificity of the extraction steps needs further attention, as it was shown that some extraction steps, such as the organo-chelating Hg fraction, do not provide meaningful results. This further suggests that protocols for mercury fractionation need further harmonization in order to improve the comparability of the results and their use in risk assessment. Volatile mercury fluxes averaged between 0.04 and 6.5 ng g(-1) h(-1). Good agreement (R2 = 0.81-0.95) was found between the non-cinnabar fractions and evaporation of Hg0. Both the temperature and sample moisture had significant effects on mercury volatilization. The results in this study were obtained at 70 degrees C, which may be somewhat high, in particular for bacterial activity which may also play an important role in Hg volatilization. Therefore it is strongly suggested that further optimisation of the protocol to assess Hg volatilization from soil is required.  相似文献   
4.
Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \) ), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m?3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m?3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m?3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.  相似文献   
5.
The study was focused on understanding the mercury contamination caused by a cement plant. Active and passive biomonitoring with epiphytic lichens was combined with other instrumental measurements of mercury emissions, mercury concentrations in raw materials, elemental mercury concentrations in air, quantities of dust deposits, temperatures, precipitation and other measurements from the cement plant's regular monitoring programme. Active biomonitoring with transplanted lichens Pseudevernia furfuracea (L.) Zopf was performed at seven of the most representative sites around the cement plant and one distant reference site for periods of 3, 6 and 12 months. In situ lichens of different species were collected at the beginning of the monitoring period at the same sites. Mercury speciation of the plant exhaust gas showed that the main form of emitted mercury is reactive gaseous mercury Hg2?, which is specific for cement plants. Elemental mercury in air was measured in different meteorological conditions using a portable mercury detector. Concentrations in air were relatively low (on average below 10 ng m?3). In situ lichens showed Hg concentrations comparable to lichens taken from the background area for transplantation, indicating that the local pollution is not severe. Transplanted lichens showed an increase of mercury, especially at one site near the cement plant. A correlation between precipitation and Hg uptake was not found probably due to a rather uniform rainfall in individual periods. Dust deposits did not influence Hg uptake significantly. Lichens vitality was affected over longer biomonitoring periods, probably due to some elements in dust particles, their alkalinity and the influence of other emissions. Mercury uptake measured in vital transplanted lichens was in a good correlation with the working hours (i.e. emitted Hg quantity) of the kiln. The study showed that selected lichens could be used to detect low to moderate Hg emissions from a cement plant and that the biomonitoring procedure could be further standardized and used as part of an environmental monitoring programme.  相似文献   
6.
Vertical profiles of radioactive radon gas ((222)Rn) and dissolved gaseous mercury (DGM) in seawater in the Mediterranean Basin have been measured. They were found in the range 1.7-19.3 Bq m(-3) and 22-200 ng m(-3), respectively, at the bottom and 2.0-20.0 Bq m(-3) and 6-80 ng m(-3), respectively, at the surface. Preliminary results indicate a positive correlation between concentrations of both gases at some locations, but not at others. Further analyses will be performed, after (226)Ra contents in sediment and water have been determined, taking into account environmental parameters such as air and water temperatures, barometric pressure and water flow, in order to better interpret these profiles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号