首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   2篇
评价与监测   1篇
社会与环境   2篇
  2016年   3篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Increasing value is attributed to mangroves due to their considerable capacity to sequester carbon, known as ‘blue carbon’. Assessments of opportunities and challenges associated with estimating the significance of carbon sequestered by mangroves need to consider a range of disciplinary perspectives, including the bio-physical science mangroves, social and economic issues of land use, local and international law, and the role of public and private finance. We undertook an interdisciplinary review based on available literature and fieldwork focused on parts of the Mekong River Delta (MRD). Preliminary estimates indicate mangrove biomass may be 70–150 t ha?1, but considerably larger storage of carbon occurs in sediments beneath mangroves. These natural stores of carbon are compromised when mangroves are removed to accommodate anthropogenic activities. Mangroves are an important resource in the MRD that supplies multiple goods and services, and conservation or re-establishment of mangroves provides many benefits. International law and within-country environmental frameworks offer increasing scope to recognize the role that mangrove forests play through carbon sequestration, in order that these might lead to funding opportunities, both in public and private sectors. Such schemes need to have positive rather than negative impacts on the livelihoods of the many people living within and adjacent to these wetlands. Nevertheless, many challenges remain and it will require further targeted and coordinated scientific research, development of economic and social incentives to protect and restore mangroves, supportive law and policy mechanisms at global and national levels, and establishment of long-term financing for such endeavours.  相似文献   
2.
We propose a framework in which thresholds of potential concern (TPCs) and limits of acceptable change (LACs) are used in concert in the assessment of wetland condition and vulnerability and apply the framework in a case study. The lower Murrumbidgee River floodplain (the ‘Lowbidgee’) is one of the most ecologically important wetlands in Australia and the focus of intense management intervention by State and Federal government agencies. We used a targeted management stakeholder workshop to identify key values that contribute to the ecological significance of the Lowbidgee floodplain, and identified LACs that, if crossed, would signify the loss of significance. We then used conceptual models linking the condition of these values (wetland vegetation communities, waterbirds, fish species and the endangered southern bell frog) to measurable threat indicators, for which we defined a management goal and a TPC. We applied this framework to data collected across 70 wetland storages’, or eco-hydrological units, at the peak of a prolonged drought (2008) and following extensive re-flooding (2010). At the suggestion of water and wetland mangers, we neither aggregated nor integrated indices but reported separately in a series of chloropleth maps. The resulting assessment clearly identified the effect of rewetting in restoring indicators within TPC in most cases, for most storages. The scale of assessment was useful in informing the targeted and timely management intervention and provided a context for retaining and utilising monitoring information in an adaptive management context.  相似文献   
3.
Restoration of waterbird diversity and abundance is a key objective of river system management in Australia. Therefore, understanding the effects of climatic and hydrological variables on waterbird population dynamics is fundamental for successful river restoration programs. We investigated the population dynamics of waterbirds (total abundance) and seven functional waterbird groups in the floodplains of lower Murrumbidgee River. We found a general declining abundance trend from 1983 to 2007, except for the deep water foragers. We modelled the relative contribution of the climatic and hydrological factors to waterbird population decrease using the generalized additive model (GAM) framework after identifying the negative binomial distribution. Most of the seven functional groups were positively related to both annual rainfall and water usage, defined as the total water volume intercepted by the river reach, and the models indicated that rainfall was slightly more important. Temperature also played a role in waterbird abundance: the maximum summer temperature negatively influenced the abundance of dabbling ducks, shoreline foragers and fish eaters, while the minimum winter temperature positively affected the abundance of dabbling ducks and shoreline foragers. Overall, our results support the practice of providing environmental water for sustaining waterbird populations. However, environmental water provision is likely to be most effective when timed to coincide with antecedent rainfall.  相似文献   
4.
Climate change is increasing the need to characterise the vulnerability of coastal landscapes to coastal and flood hazards that result in erosion and inundation. Indices, such as the Coastal Vulnerability Index (CVI), have emerged as useful tools with which coastal managers can prioritise areas for further detailed assessment of vulnerability, risk, resilience and adaptation options. Approaches, such as the use of an index, efficiently characterise the vulnerability of linear, one-dimensional coastal features such as coastlines; however, they do not capture variability in coastal processes affecting more complex, non-linear features, such as estuaries, or interactive effects of coastal processes between linear (e.g. coastlines) and non-linear (e.g. estuaries) landforms. We present an approach that uses geomorphology to indicate biophysical vulnerability of estuaries to coastal and flood hazards. The approach is applied to the South Coast of NSW; a wave-dominated coastline of approximately 400 km length that contains more than 100 estuaries. We demonstrate the simplicity of the approach and its utility in identifying areas requiring higher resolution assessments. Although this approach does not include socio-economic factors, we demonstrate the capacity to incorporate socio-economic components of vulnerability using regional land use mapping. We infer that the most vulnerable estuaries are characterised by large catchment areas, broad estuarine valleys, mature stages of infill, or entrances oriented towards the prevailing wave direction. The area below 15 m elevation was identified as a robust indicator of the total area of vulnerability within a catchment. This approach can be applied to one-dimensional and more complex two-dimensional landscapes, such as estuaries; integrates varying sea-level rise projections; and incorporates a wider range of hazards that operate in the coastal zone.  相似文献   
5.
Global degradation of coastal ecosystems is influencing the provision of ecosystem services, including fisheries maintenance services. Degradation of the Australian coastal zone and its resources following European occupation has been recognised for some time. This includes the loss of ecologically important coastal wetlands, which have strong trophic and habitat links to fisheries. In NSW, structural flood mitigation works are a principle driver of the decline of coastal wetlands; however, little action has been taken to quantify the extent of decline due to limited information of the pre-European settlement extent of coastal wetlands. We use spatial data sets in GIS to quantify prime fish habitat and calculate the loss of fish habitat for the large coastal floodplains of northern NSW, which are significant contributors to the commercial and recreational fisheries of NSW. The technique is validated by comparison with early maps of wetland distribution. We identified pre-European distribution of available fish habitat of approximately 477,000 ha, of which 87,000 ha was identified as prime fish habitat. Approximately 62,000 ha of prime fish habitat was impacted by drainage of the coastal floodplains in association with flood mitigation works which intensified in the mid-1950s and were largely completed by 1971, equating to a loss of approximately 72 % of prime fish habitat. The declining value of the ecosystem services provided by prime fish habitat following drainage is likely to be substantial. Some actions have taken place to restore the functions of this habitat although significant opportunities remain to reverse this decline through management actions that restore natural drainage and reinstate tidal exchange. These actions become even more important as pressures on coastal wetlands increase with climate change and associated sea-level rise.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号