首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   1篇
环保管理   1篇
基础理论   2篇
污染及防治   4篇
  2021年   1篇
  2014年   2篇
  2013年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 281 毫秒
1
1.
CL-20 is a recently synthesized component of energetic propellant formulations. Although energetic aspects of CL-20 have attracted considerable attention, its environmental behavior is unknown. A multi-disciplinary study covering a variety of fate, transport, and toxicity issues of CL-20 is currently under way in the Center for Environmental Engineering at Stevens Institute of Technology. Preliminary results on water solubility, biodegradability, hydrolytic reactivity, thermal decomposition and soil microbial and plant toxicity are reported in this article.  相似文献   
2.
A stabilization/solidification treatment scheme was devised to stabilize Pb and Cu contaminated soil from a firing range using renewable waste resources as additives, namely waste oyster shells (WOS) and fly ash (FA). The WOS, serving as the primary stabilizing agent, was pre-treated at a high temperature to activate quicklime from calcite. Class C FA was used as a secondary additive along with the calcined oyster shells (COS). The effectiveness of the treatment was evaluated by means of the toxicity characteristic leaching procedure (TCLP) and the 0.1 M HCl extraction tests following a curing period of 28 days. The combined treatment with 10 wt% COS and 5 wt% FA cause a significant reduction in Pb (>98 %) and Cu (>96 %) leachability which was indicated by the results from both extraction tests (TCLP and 0.1 M HCl). Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDX) analyses are used to investigate the mechanism responsible for Pb and Cu stabilization. SEM–EDX results indicate that effective Pb and Cu immobilization using the combined COS–FA treatment is most probably associated with ettringite and pozzolanic reaction products. The treatment results suggest that the combined COS–FA treatment is a cost effective method for the stabilization of firing range soil.  相似文献   
3.
Environmental Geochemistry and Health - In this study, soil washing is applied for the remediation of heavy-metal (Pb, Cu and Zn) contaminated paddy soil located near an abandoned mine area. FeCl3...  相似文献   
4.
Leaching mechanisms of Cr(VI) from chromite ore processing residue   总被引:1,自引:0,他引:1  
Batch leaching tests, qualitative and quantitative x-ray powder diffraction (XRPD) analyses, and geochemical modeling were used to investigate the leaching mechanisms of Cr(VI) from chromite ore processing residue (COPR) samples obtained from an urban area in Hudson County, New Jersey. The pH of the leaching solutions was adjusted to cover a wide range between 1 and 12.5. The concentration levels for total chromium (Cr) and Cr(VI) in the leaching solutions were virtually identical for pH values >5. For pH values <5, the concentration of total Cr exceeded that of Cr(VI) with the difference between the two attributed to Cr(III). Geochemical modeling results indicated that the solubility of Cr(VI) is controlled by Cr(VI)-hydrocalumite and Cr(VI)-ettringite at pH >10.5 and by adsorption at pH <8. However, experimental results suggested that Cr(VI) solubility is controlled partially by Cr(VI)-hydrocalumite at pH >10.5 and by hydrotalcites at pH >8 in addition to adsorption of anionic chromate species onto inherently present metal oxides and hydroxides at pH <8. As pH decreased to <10, most of the Cr(VI) bearing minerals become unstable and their dissolution contributes to the increase in Cr(VI) concentration in the leachate solution. At low pH ( <1.5), Cr(III) solid phases and the oxides responsible for Cr(VI) adsorption dissolve and release Cr(III) and Cr(VI) into solution.  相似文献   
5.
Amelioration of acidic soil using various renewable waste resources   总被引:1,自引:0,他引:1  
In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.  相似文献   
6.
Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth.  相似文献   
7.
Immobilization of lead in contaminated firing range soil using biochar   总被引:3,自引:0,他引:3  
Soybean stover-derived biochar was used to immobilize lead (Pb) in military firing range soil at a mass application rate of 0 to 20 wt.% and a curing period of 7 days. The toxicity characteristic leaching procedure (TCLP) was performed to evaluate the effectiveness of the treatment. The mechanism responsible for Pb immobilization in military firing range soil was evaluated by scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray absorption fine structure (XAFS) spectroscopy analyses. The treatment results showed that TCLP Pb leachability decreased with increasing biochar content. A reduction of over 90 % in Pb leachability was achieved upon treatment with 20 wt.% soybean stover-derived biochar. SEM-EDX, elemental dot mapping and XAFS results in conjunction with TCLP leachability revealed that effective Pb immobilization was probably associated with the pozzolanic reaction products, chloropyromorphite and Pb-phosphate. The results of this study demonstrated that soybean stover-derived biochar was effective in immobilizing Pb in contaminated firing range soil.  相似文献   
8.
Effects of tungsten on environmental systems   总被引:1,自引:0,他引:1  
Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号