首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   2篇
污染及防治   1篇
  2018年   1篇
  2017年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.

Urban agricultural soils are highly variable, and careful selection of sensitive indicators is needed for the assessment of soil quality. This study is proposed to develop an index based on soil enzyme activities for assessing the quality of urban agricultural soils. Top soils were collected from urban agricultural areas of Korea, and soil chemical properties, texture, microbial fatty acids, and enzyme activities were determined. The soils belonged to five textural classes with the highest frequency of sandy loam. There was no clear correlation between the soil chemical properties and soil microbial properties. Principal component analysis (PCA) and factor analysis were applied to microbial groups for identification of microbial community variation in soils. Two soil groups, namely group 1 (G1) and group 2 (G2), based on microbial community abundance were examined by PCA, and those were more prominent in factor analysis. The G1 soils showed higher microbial community abundance than G2 soils. The canonical discriminant analysis was applied to the enzyme activities of sandy loam soil to develop an index, and the index validation was confirmed using the unused soils and published data. The high-quality soils in published literature assigned the high valued index. Microbial fatty acids and soil enzyme activities can be suitable indicators for soil quality evaluation of urban agricultural soils.

  相似文献   
2.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yang Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
3.
Level I and II fugacity approaches were used to model the environmental distribution of benzene, anthracene, phenanthrene, 1-methylphenanthrene and benzo[a]pyrene in a four phase biopile system, accounting for air, water, mineral soil and non-aqueous phase liquid (oil) phase. The non-aqueous phase liquid (NAPL) and soil phases were the dominant partition media for the contaminants in each biopile and the contaminants differed markedly in their individual fugacities. Comparison of three soils with different percentage of organic carbon (% org C) showed that the % org C influenced contaminant partitioning behaviour. While benzene showed an aqueous concentration worthy of note for leachate control during biopiling, other organic chemicals showed that insignificant amount of chemicals leached into the water, greatly reducing the potential extent of groundwater contamination. Level II fugacity model showed that degradation was the dominant removal process except for benzene. In all three biopile systems, the rate of degradation of benzo(a)pyrene was low, requiring more than 12 years for soil concentrations from a spill of about 25 kg (100 mol) to be reduced to a concentration of 0.001 microgg(-1). The removal time of 1-methylphenanthrene and either anthracene or phenanthrene was about 1 and 3 years, respectively. In contrast, benzene showed the highest degradation rate and was removed after 136 days in all biopile systems. Overall, this study confirms the association of risk critical contaminants with the residual saturation in treated soils and reinforces the importance of accounting for the partitioning behaviour of both NAPL and soil phases during the risk assessment of oil-contaminated sites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号