首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   2篇
污染及防治   1篇
  2015年   1篇
  2012年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.  相似文献   
2.
Summary Latex is a widespread defence in plants against natural enemies and a literature-based summary of latex-producing angiosperms shows records in 40 families, and more than 20,000 species are estimated to bear laticiferous structures of some kind. This is considerably higher than the usually quoted figure of 12,500 species. There are more tropical than temperate latex-bearing families, both in absolute numbers and proportionally. Proportions of latex-bearing families are similar both in tropical and in more widespread or cosmopolitan families. Significantly more latex-bearing species belong to tropical than either to temperate or to widespread taxa, both in absolute and in relative terms. These differences may be related to the higher diversity of natural enemy species and to higher rates of herbivory in the tropics.  相似文献   
3.
Severe damage often provokes compensatory resprouting of plants, which commonly modify plant morphological and phenological traits. Rapid plant growth often results in poorly defended nutrient-rich foliage, which is more susceptible to foliar-chewing herbivores. It is less known how other guilds of arthropods are affected by plant regrowth. We tested the hypotheses that clipping-induced resprouting and nutrient availability, separately and in combination, would (1) influence plant traits, (2) benefit chewing herbivores, sap-suckers, gallers, and pre-dispersal seed predators, and (3) cascade up to the third trophic level by positively affecting herbivores. Resprouted plants were morphologically and phenologically different from undamaged plants; as a result, seed predation, infestation rate, richness, and diversity of seed predators increased, and species composition was altered. Leaf consumption by chewing herbivores was four times higher on resprouted plants. The number of galls decreased, whereas the abundance of sap-sucking and leaf-chewing insects was not affected. The incidence of predators and parasitoids was also higher on resprouted plants and on plants with nutrients added, but the increase was less pronounced compared to the herbivores they feed on. Thus, the effects of resprouting, contingent on nutrient availability, can propagate simultaneously through two independent tri-trophic level pathways.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号