首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
In variable environments, organisms are bound to track environmental changes if they are to survive. Most marine mammals and seabirds are colonial, central-place foragers with long-term breeding-site fidelity. When confronted with environmental change, such species are potentially constrained in their ability to respond to these changes. For example, if environmental conditions deteriorate within their limited foraging range, long-lived species favour adult survival and abandon their current breeding effort, which ultimately influences population dynamics. Should poor conditions persist over several seasons, breeding-site fidelity may force animals to continue breeding in low-quality habitats instead of emigrating towards more profitable grounds. We assessed the behavioural response of a site-faithful central-place forager, the Cape gannet Morus capensis, endemic to the Benguela upwelling system, to a rapid shift in the distribution and abundance of its preferred prey, small pelagic shoaling fish. We studied the distribution and the abundance of prey species, and the diet, foraging distribution, foraging effort, energy requirements, and breeding success of gannets at Malgas Island (South Africa) over four consecutive breeding seasons. Facing a rapid depletion of preferred food within their foraging range, Cape gannets initially increased their foraging effort in search of their natural prey. However, as pelagic fish became progressively scarcer, breeding birds resorted to scavenging readily available discards from a nearby demersal fishery. Their chicks cannot survive on such a diet, and during our 4-year study, numbers of breeding birds at the colony decreased by 40% and breeding success of the remaining birds was very low. Such behavioural inflexibility caused numbers of Cape gannets breeding in Namibia to crash by 95% following over-fishing of pelagic fish in the 1970s. In the context of rapid environmental changes, breeding-site fidelity of long-lived species may increase the risk of local or even global extinction, rendering these species particularly vulnerable to global change.  相似文献   
2.
Knowledge on how divers exploit the water column vertically in relation to water depth is crucial to our understanding of their ecology and to their subsequent conservation. However, information is still lacking for the smaller-bodied species, due mostly to size constraints of data-loggers. Here, we report the diving behaviour of a flying diving seabird, the Cape Cormorant Phalacrocorax capensis, weighing 1.0–1.4 kg. Results were obtained by simultaneously deploying small, high resolution and high sampling frequency GPS and time-depth loggers on birds breeding on islands off Western South Africa (34°S, 18°E) in 2008. In all, dive category was assigned to all dives performed by 29 birds. Pelagic dives occurred almost as frequently as benthic dives. Pelagic dives were shallow (mean: 5 m) and took place over seafloors 5–100 m deep. Benthic dives were deeper, occurring on seafloors mainly 10–30 m deep. Dive shape was linked to dive category in only 60% of dives, while the descent rate, ascent rate and bottom duration/dive duration ratio of a dive best explained its dive category. This shows that only the concomitant use of tracking and depth tags can adequately classify diving strategies in a diver like the Cape Cormorant. Diet was mainly Cape Anchovy Engraulis encrasicolis, suggesting that birds probably displayed two contrasted strategies for capturing the same prey. Flexible foraging techniques represent an important key to survival inside the highly productive but heterogeneous Benguela upwelling ecosystem.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号