首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2012年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 20 毫秒
1
1.
Abstract:  Numerous ecological studies have demonstrated the dramatic effects that humans have on coastal marine ecosystems. Consequently, marine reserves have been established to preserve biodiversity. Recent reviews show that this strategy has paid off because inside reserves, most species have rapidly increased in size and abundance. Even though these studies focused on free-living organisms and paid little attention to parasite populations, numerous authors support the hypothesis that parasitism levels could be good indicators of ecosystem stability. We examined harvesting effects on the dynamics of a parasitic trematode ( Proctoeces lintoni ) that completes its life cycle in intertidal mussels ( Perumytilus purpuratus ), keyhole limpets ( Fissurella crassa ), and clingfish ( Sicyases sanguineus ). All of these species are directly or indirectly affected by humans. Prevalence and abundance of the trematode P. lintoni in the three host species were compared in four study sites that differed in the intensity of human harvest. Parasitism infection in limpets and mussels was significantly higher in areas protected from human harvesting than in open-access areas, which suggests a significant change in parasite dynamics inside reserves. Yet the average parasitic biomass found in the gonads of F. crassa did not differ between protected and open-access areas. These results show, then, that the parasite system responded by increasing infection rates in marine protected areas without implication for reproductive success of the intermediate host. Our findings show that the indirect effects of harvesting by humans on the embedded parasite communities of littoral ecosystems require further scientific investigation.  相似文献   
2.
Abstract: Given the conflict with human interests that in many cases results in the extirpation of large carnivores, acceptance of their reintroduction is a considerable challenge. By the 1980s Mexican wolves (Canis lupus) were extinct in the wild. In 1998 a population was reintroduced in the Blue Range Mountains of New Mexico (U.S.A.). Efforts to reintroduce the species in Mexico have been ongoing since the late 1980s. Four teams working independently identified 6 areas in northern Mexico in the historic range of Mexican wolves, where reintroductions could potentially be successful. Each team used different methods and criteria to identify the areas, which makes it difficult to prioritize among these areas. Therefore, members of the different teams worked together to devise criteria for use in identifying priority areas. They identified areas with high, intermediate, and low potential levels of conflict between wolves and humans. Areas with low potential conflict had larger buffers (i.e., distance from human settlement to areas suitable for wolves) around human settlements than high‐ and intermediate‐conflict areas and thus were thought most appropriate for the first reintroduction. High‐conflict areas contained habitat associated with wolf presence, but were closer to human activity. The first reintroduction of Mexican wolves to Mexico occurred in October 2011 in one of the identified low‐conflict areas. The identification of suitable areas for reintroduction represents a crucial step in the process toward the restoration of large carnivores. Choice of the first reintroduction area can determine whether the reintroduction is successful or fails. A failure may preclude future reintroduction efforts in a region or country.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号