首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   2篇
基础理论   5篇
  2012年   2篇
  2011年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In the species-specific and obligate mutualism between the fig (Ficus carica) and its pollinator (the fig wasps Blastophaga psenes), a third participant, the ant Crematogaster scutellaris, is a predator of the wasps. Here, we ask how ant workers can rapidly localise such prey, whose availability is limited in time and space. Using a Y-tube olfactometer, we tested ant response to odours emitted by different types of figs (receptive female, ripe female or male figs) and by fig wasps (pollinators or non-pollinators). We demonstrate that ants were significantly attracted only to odours emitted by pollinators, either alone or associated with odours of male figs (releasing wasps). Detection of prey odour by ants is an important trait that can explain their observed high rate of predation on pollinators, and could have important implications on the stability of the fig/fig wasp mutualism.  相似文献   
2.
Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.  相似文献   
3.
Gundale MJ  Hyodo F  Nilsson MC  Wardle DA 《Ecology》2012,93(7):1695-1706
Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche breadth of the three shrub species are often affected by neighbors, and further that both the identity of neighbors and site fertility strongly determine whether these interactions are positive, negative, or neutral. These findings have implications for understanding species coexistence and the reciprocal relationships between productivity and species diversity in this ecosystem.  相似文献   
4.
5.
Despite their ubiquity, the role of ants in driving ecosystem processes both aboveground and belowground has been seldom explored, except within the nest. During 1995 we established 16 ant exclusion plots of approximately 1.1 x 1.1 m, together with paired control plots, in the understory layer of a boreal forest ecosystem in northern Sweden that supports high densities of the mound-forming ant Formica aquilonia, a red wood ant species of the Formica rufa group. Aboveground and belowground measurements were then made on destructively sampled subplots in 2001 and 2008, i.e., 6 and 13 years after set-up. While ant exclusion had no effect on total understory plant biomass, it did greatly increase the relative contribution of herbaceous species, most likely through preventing ants from removing their seeds. This in turn led to higher quality resources entering the belowground subsystem, which in turn stimulated soil microbial biomass and activity and the rates of loss of mass and carbon (C) and nitrogen (N) from litter in litterbags placed in the plots. This was accompanied by losses of approximately 15% of N and C stored in the humus on a per area basis. Ant exclusion also had some effects on foliar stable isotope ratios for both C and N, most probably as a consequence of greater soil fertility. Further, exclusion of ants had multitrophic effects on a microbe-nematode soil food web with three consumer trophic levels and after six years promoted the bacterial-based relative to the fungal-based energy channel in this food web. Our results point to a major role of red wood ants in determining forest floor vegetation and thereby exerting wide-ranging effects on belowground properties and processes. Given that the boreal forest occupies 11% of the Earth's terrestrial surface and stores more C than any other forest biome, our results suggest that this role of ants could potentially be of widespread significance for biogeochemical nutrient cycling, soil nutrient capital, and sequestration of belowground carbon.  相似文献   
6.
Palm pollination systems are highly diverse, including by wind and by several different groups of insects. Many palm species are associated with more or less specific pollinating weevils that are also floral herbivores. For many such palms, the importance of these "palm flower weevils" as pollinators has not been examined. Here we describe a new ex situ method of demonstrating insect pollination when pollinator exclusion is not possible. We show that Neoderelomus piriformis beetles carry pollen and deposit it on the stigma of Phoenix canariensis. Up until now, pollination systems in Phoenix have been unclear, despite the economic importance of the date palm P. dactylifera. We demonstrate here that small weevils that visit inflorescences and often inconspicuously hide there could be efficient pollinators.  相似文献   
7.
Conservation problems are usually studied at the population or ecosystem levels. Formulating predictive theory for the domain in between has been difficult. Fig trees and their pollinating wasps, principally tropical groups of organisms, form pairs of obligate mutualists that provide unique opportunities for studying the influence of species interactions on the survival of small populations. Survival of each partner depends on that of the associated species. The pollinator population can be maintained only if figs are produced year-round. Because fig trees flower synchronously at the individual level, wasps have to locate a new individual host tree at each generation. We describe results of simulation models estimating the minimum number of trees required to maintain a wasp population using two levels of the criteria: (1) different probability of survival (50% and 99%) and (2) different time of survival (5 or 1000 years). We also examined how these different estimates are sensitive to differences in the seasonality of flowering period and in the length of the period of female receptivity in figs. Such estimates can be used to understand the potential effects of the reduction of fig population size via fragmentation. Unlike most studies on the effect of low population size on population viability, our paper focuses on maintenance of a biotic interaction, rather than on single-species dynamics. The biotic interaction on which we focus is important because figs in many tropical ecosystems may be keystone resources for frugivores that are in turn essential seed dispersal agents for other plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号