首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   1篇
基础理论   4篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2012年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
A study was conducted on two types of plastic materials, Mater-Bi Novamont (MB) and Environmental Product Inc. (EPI), to assess their biodegradability under aerobic and anaerobic conditions. For aerobic conditions, organic fractions of municipal solid wastes were composted. For the anaerobic process, anaerobic inoculum from a wastewater treatment plant was used. Cellulose filter papers (CFP) were used as a positive control for both mediums. The composting process was monitored in terms of temperature, moisture and volatile solids and the biodegradation of the samples were monitored in terms of mass loss. Monitoring results showed a biodegradation of 27.1% on a dry basis for MB plastic within a period of 72 days of composting. Biodegradability under an anaerobic environment was monitored in terms of biogas production. A cumulative methane gas production of 245ml was obtained for MB, which showed good degradation as compared to CFP (246.8ml). However, EPI plastic showed a cumulative methane value of 7.6ml for a period of 32 days, which was close to the blank (4.0ml). The EPI plastic did not biodegrade under either condition. The cumulative carbon dioxide evolution after 32 days was as follows: CFP 4.406cm(3), MB 2.198cm(3) and EPI 1.328cm(3). The cumulative level of CO(2) varying with time fitted sigmoid type curves with R(2) values of 0.996, 0.996 and 0.995 for CFP, MB and EPI, respectively.  相似文献   
2.
Environmental Chemistry Letters - The release of recalcitrant dyes into the biosphere is a threat because of pollution and environmental health issues. Adsorption using commercial activated carbon...  相似文献   
3.
Textile effluents in natural waters pose environmental health problems if not treated to safe limits. Various bacterial species have the potential to degrade dyes. Here we studied the ability of Bacillus algicola to decolourise red, blue and yellow azo dyes. B. algicola was isolated from soil samples taken from a sanitary landfill site. Isolation and screening were performed using mineral salt medium. Dye-decolourising isolates were assessed in their capacity to decolourise dyes. Experiments were conducted at pH 6, 7 and 8, and 25, 35 and 45 °C. Phytotoxicity of the dyes and biodegradation products was assessed by seed germination tests. Results show that B. algicola gave the highest decolourisation at pH 8.0 and 25 °C in the presence of yeast extract as media supplement. B. algicola degraded the red and blue azo dyes by over 95%. The phytotoxicity results indicated that biodegradation products of the red and blue azo dyes were not toxic. Biodegradation products of the yellow dye were, however, toxic and considerably hindered germination. From these results, we infer that B. algicola has good potential for degrading and decolourising the red and blue test azo dyes.  相似文献   
4.
Removal of heavy metals by biosorption   总被引:1,自引:0,他引:1  
Industrialization and urbanization have resulted in increased releases of toxic heavy metals into the natural environment comprising soils, lakes, rivers, groundwaters and oceans. Research on biosorption of heavy metals has led to the identification of a number of microbial biomass types that are extremely effective in bioconcentrating metals. Biosorption is the binding and concentration of adsorbate from aqueous solutions by certain types of inactive and dead microbial biomass. The novel types of biosorbents presently reviewed are grouped under fungal biomass, biomass of non-living, dried brown marine algae, agricultural wastes and residues, composite chitosan biosorbent prepared by coating chitosan, cellulose-based sorbents and bacterial strains. The reports discussed in this review collectively suggest the promise of biosorption as a novel and green bioremediation technique for heavy metal pollutants from contaminated natural waters and wastewaters.  相似文献   
5.
Environmental Chemistry Letters - The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号