首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
综合类   3篇
基础理论   8篇
评价与监测   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   2篇
  2012年   3篇
  2009年   1篇
  2008年   1篇
  1977年   1篇
排序方式: 共有12条查询结果,搜索用时 62 毫秒
1.
2.
3.
The effect of environmental goods on money wages and the price of nontradable goods is analyzed. Environment is treated as a regular good, and as such, is added to the two other composite goods which are typically used as components of the utility function. In the budget constraint the relevant amount of environmental goods consists of that part which the individual might purchase in the market. Under these conditions it is demonstrated that an equilibrium situation will prevail if either the money wage or the price of the nontradable good, or both, are a function of the given amount of the environmental goods.  相似文献   
4.
Because environments can vary over space and time in non-predictable ways, foragers must rely on estimates of resource availability and distribution to make decisions. Optimal foraging theory assumes that foraging behavior has evolved to maximize fitness and provides a conceptual framework in which environmental quality is often assumed to be fixed. Another more mechanistic conceptual framework comes from the successive contrast effects (SCE) approach in which the conditions that an individual has experienced in the recent past alter its response to current conditions. By regarding foragers’ estimation of resource patches as subjective future value assessments, SCE may be integrated into an optimal foraging framework to generate novel predictions. We released Allenby’s gerbils (Gerbillus andersoni allenbyi) into an enclosure containing rich patches with equal amounts of food and manipulated the quality of the environment over time by reducing the amount of food in most (but not all) food patches and then increasing it again. We found that, as predicted by optimal foraging models, gerbils increased their foraging activity in the rich patch when the environment became poor. However, when the environment became rich again, the gerbils significantly altered their behavior compared to the first identical rich period. Specifically, in the second rich period, the gerbils spent more time foraging and harvested more food from the patches. Thus, seemingly identical environments can be treated as strikingly different by foragers as a function of their past experiences and future expectations.  相似文献   
5.
6.
Theory states that an optimal forager should exploit a patch so long as its harvest rate of resources from the patch exceeds its energetic, predation, and missed opportunity costs for foraging. However, for many foragers, predation is not the only source of danger they face while foraging. Foragers also face the risk of injuring themselves. To test whether risk of injury gives rise to a foraging cost, we offered red foxes pairs of depletable resource patches in which they experienced diminishing returns. The resource patches were identical in all respects, save for the risk of injury. In response, the foxes exploited the safe patches more intensively. They foraged for a longer time and also removed more food (i.e., had lower giving up densities) in the safe patches compared to the risky patches. Although they never sustained injury, video footage revealed that the foxes used greater care while foraging from the risky patches and removed food at a slower rate. Furthermore, an increase in their hunger state led foxes to allocate more time to foraging from the risky patches, thereby exposing themselves to higher risks. Our results suggest that foxes treat risk of injury as a foraging cost and use time allocation and daring—the willingness to risk injury—as tools for managing their risk of injury while foraging. This is the first study, to our knowledge, which explicitly tests and shows that risk of injury is indeed a foraging cost. While nearly all foragers may face an injury cost of foraging, we suggest that this cost will be largest and most important for predators.  相似文献   
7.
Compassionate conservation is based on the ethical position that actions taken to protect biodiversity should be guided by compassion for all sentient beings. Critics argue that there are 3 core reasons harming animals is acceptable in conservation programs: the primary purpose of conservation is biodiversity protection; conservation is already compassionate to animals; and conservation should prioritize compassion to humans. We used argument analysis to clarify the values and logics underlying the debate around compassionate conservation. We found that objections to compassionate conservation are expressions of human exceptionalism, the view that humans are of a categorically separate and higher moral status than all other species. In contrast, compassionate conservationists believe that conservation should expand its moral community by recognizing all sentient beings as persons. Personhood, in an ethical sense, implies the individual is owed respect and should not be treated merely as a means to other ends. On scientific and ethical grounds, there are good reasons to extend personhood to sentient animals, particularly in conservation. The moral exclusion or subordination of members of other species legitimates the ongoing manipulation and exploitation of the living worlds, the very reason conservation was needed in the first place. Embracing compassion can help dismantle human exceptionalism, recognize nonhuman personhood, and navigate a more expansive moral space.  相似文献   
8.
The role of behavioral ecology in improving wildlife conservation and management has been the subject of much recent debate. We sought to answer 2 foundational questions about the current use of behavioral knowledge in conservation: To what extent is behavioral knowledge used in wildlife conservation and management, and how does the use of animal behavior differ among conservation fields in both frequency and types of use? We searched the literature for intersections between key fields of animal behavior and conservation and created a systematic heat map (i.e., graphical representation of data where values are represented as colors) to visualize relative efforts. Some behaviors, such as dispersal and foraging, were commonly considered (mean [SE] of 1147.38 [353.11] and 439.44 [108.85] papers per cell, respectively). In contrast, other behaviors, such as learning, social, and antipredatory behaviors were rarely considered (mean [SE] of 33.88 [7.62], 44.81 [10.65], and 22.69 [6.37] papers per cell, respectively). In many cases, awareness of the importance of behavior did not translate into applicable management tools. Our results challenge previous suggestions that there is little association between the fields of behavioral ecology and conservation and reveals tremendous variation in the use of different behaviors in conservation. We recommend that researchers focus on examining underutilized intersections of behavior and conservation themes for which preliminary work shows a potential for improving conservation and management, translating behavioral theory into applicable and testable predictions, and creating systematic reviews to summarize the behavioral evidence within the behavior‐conservation intersections for which many studies exist.  相似文献   
9.
Short-term personal exposure of passengers in different types of motor vehicles to carbon monoxide was investigated in an intensively used main road in Israel’s Tel Aviv metropolitan area. According to monitoring stations of the Ministry for Environmental Protection (MEP), concentrations of carbon monoxide (CO) along the road, at a height of 3 m above pedestrian level, in the Tel Aviv metropolitan area, are currently very low. However, these measurements do not reflect the actual exposure of commuters, which were the main objective of this study. Four vehicle types/travel modes were investigated: private cars with closed windows, private cars with open windows, motorcycles, and buses. The commuter CO average exposure was the accumulative exposure divided by the duration of the sampling taken along the route, for each type of vehicles. The results showed that commuters in cars with closed windows were exposed to the highest mean CO level, 27.2 ppm, for a period of 38 min; those in a car with open windows, to 19.7 ppm for 38 min; motorcycle riders, to 12.8 ppm, for 17 min; and bus users were exposed to the lowest mean pollution level, of only 3.6 ppm, for 25 min. Thus, CO values of 1 to 3 ppm, as measured at an MEP adjacent monitoring station, may indicate the exposure to CO pollution of area residents, but do not represent the actual exposure of commuters on the congested main road.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号