首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
基础理论   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent‐based method (Migrate‐n) and a disequilibrium‐based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over‐estimated recent migration rates; (ii) the coalescent‐based method (Migrate‐n) provided better estimates of recent migration rate than the disequilibrium‐based method (BayesAss); (iii) the coalescent‐based method did not accurately reflect long‐term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic‐connectivity changes over time could lead to inaccurate conclusions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号