首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
环保管理   1篇
综合类   2篇
基础理论   3篇
污染及防治   4篇
评价与监测   1篇
  2017年   2篇
  2013年   5篇
  2010年   2篇
  2009年   1篇
  2003年   1篇
  1966年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22-24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung's innate immunological defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.  相似文献   
2.
3.
Objective: European car design regulations and New Car Assessment Program (NCAP) ratings have led to reductions in pedestrian injuries. The aim of this study was to evaluate the impact of improving vehicle front design on mortality and morbidity due to pedestrian injuries in a European country (Germany) and 2 countries (the United States and India) that do not have pedestrian-focused NCAP testing or design regulations.

Methods: We used data from the International Road Traffic and Accident Database and the Global Burden of Disease project to estimate baseline pedestrian deaths and nonfatal injuries in each country in 2013. The effect of improved passenger car star ratings on probability of pedestrian injury was based on recent evaluations of pedestrian crash data from Germany. The effect of improved heavy motor vehicle (HMV) front end design on pedestrian injuries was based on estimates reported by simulation studies. We used burden of disease methods to estimate population health loss by combining the burden of morbidity and mortality in disability-adjusted life years (DALYs) lost.

Results: Extrapolating from evaluations in Germany suggests that improving front end design of cars can potentially reduce the burden of pedestrian injuries due to cars by up to 24% in the United States and 41% in India. In Germany, where cars comply with the United Nations regulation on pedestrian safety, additional improvements would have led to a 1% reduction. Similarly, improved HMV design would reduce DALYs lost by pedestrian victims hit by HMVs by 20% in each country. Overall, improved vehicle design would reduce DALYs lost to road traffic injuries (RTIs) by 0.8% in Germany, 4.1% in the United States, and 6.7% in India.

Conclusions: Recent evaluations show a strong correlation between Euro NCAP pedestrian scores and real-life pedestrian injuries, suggesting that improved car front end design in Europe has led to substantial reductions in pedestrian injuries. Although the United States has fewer pedestrian crashes, it would nevertheless benefit substantially by adopting similar regulations and instituting pedestrian NCAP testing. The maximum benefit would be realized in low- and middle-income countries like India that have a high proportion of pedestrian crashes. Though crash avoidance technologies are being developed to protect pedestrians, supplemental protection through design regulations may significantly improve injury countermeasures for vulnerable road users.  相似文献   

4.
Soil, water and species diversity relationships are central components of the vegetation ecology. In this connection, the present study was performed on the three sites within the campus of Banaras Hindu University of India, to relate herbaceous species diversity to soil physical characteristic and the intensity of biotic interferences. At each site, three, 10 m × 10 m plots were randomly established and within each plot, four quadrats each 50 cm × 50 cm were randomly placed for sampling. For each quadrat, number of individuals and their herbage cover were recorded by species. Soil physical characteristics (soil moisture, water-holding capacity, soil porosity and bulk density), elements of biotic interferences and α-diversity and its components were determined for each plot. The plots were ordinated by Non-metric Multidimensional Scaling (NMS) using Importance Value Indices of the component species. Results showed that the selected locations differed in terms of soil moisture and species diversity parameters due to differences in biotic interferences. NMS ordination yielded three groups corresponding to the three communities experiencing different intensity of land use. NMS axes were substantially related to the soil and herbaceous diversity parameters and suggested that the elements of soil physical characteristics, intensity of biotic interferences and regional herbaceous species pool had profound effect on the organization and determination of herbaceous floristic composition. Further, the sample locations exhibiting greater soil moisture, water-holding capacity, soil porosity and lesser soil bulk density harboured greater herbaceous diversity. A negative relationship between indices of species diversity and soil bulk density revealed that the dry and compact soils due to greater biotic pressure contributed to the loss of species diversity. Reduction in livestock numbers, grazing pressure and soil bulk density could be helpful in the promotion of soil quality and species diversity.  相似文献   
5.
The relative impacts of hunting and habitat on waterbird community were studied in agricultural wetlands of southern India. We surveyed wetlands to document waterbird community, and interviewed hunters to document hunting intensity, targeted species, and the motivations for hunting. Our results show that hunting leads to drastic declines in waterbird diversity and numbers, and skew the community towards smaller species. Hunting intensity, water spread, and vegetation cover were the three most important determinants of waterbird abundance and community structure. Species richness, density of piscivorous species, and medium-sized species (31–65 cm) were most affected by hunting. Out of 53 species recorded, 47 were hunted, with a preference for larger birds. Although illegal, hunting has increased in recent years and is driven by market demand. This challenges the widely held belief that waterbird hunting in India is a low intensity, subsistence activity, and undermines the importance of agricultural wetlands in waterbird conservation.  相似文献   
6.
Abstract

This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22–24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung’s innate immuno-logical defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.  相似文献   
7.
Aluminum (Al) is a neurotoxicant potentially affecting ionic, cholinergic, and dopaminergic neurotransmission in the central nervous system. These alterations are known to be associated with learning ability, adaptive responses, and other aspects of behavior. The present experiment was designed to study the neurotoxic consequences of Al exposure on neurotransmitters like dopamine (DA), serotonin (5-HT), norepinephrine (NE) along with the activity of acetylcholinesterase (AChE). Furthermore, Centrophenoxine (CpH) was administered as a post treatment to evaluate its potential in Al-induced neurotoxicity. The cognitive functions and memory loss were also studied after both Al and CpH administration. Al was administered orally at a dose of 40?mg?kg?1?day?1 for a period of 8 weeks, whereas CpH was administered intraperitoneally at a dose of 100?1?mg?kg?1?day?1 for a period of 6 weeks. The study was carried out in four regions of the brain, namely cerebrum, cerebellum, medulla oblongata, and hypothalamus. A significant reduction in AChE activity and different neurotransmitters was observed after Al exposure in the regions. CpH as a post treatment proved beneficial in restoring these alterations. Al exposure also affected the cognitive functions and short-term memory, which were significantly improved following CpH post treatment.  相似文献   
8.
Plants have been used as good bio-indicators and genetic toxicity of environmental pollution in recent years. In this study, aquatic plants Hydrilla verticillata and Ceratophyllum demersum treated with 10 μmol/L Cd, 5 μmol/L Hg, and 20 μmol/L Cu for 96 h, showed changes in chlorophyll, protein content, and in DNA profiles. The changes in DNA profiles included variation in band intensity, presence or absence of certain bands and even appearance of new bands. Genomic template stability test performed for the ...  相似文献   
9.
High performance liquid chromatographic (HPLC) method was developed for analysis of seven gibberellins, i.e., GA3, GA4, GA7, GA3 methyl ester, GA7 methyl ester 3,13 diacetate, GA7 methyl ester, and fusaric acid, using an isocratic system. Method was used for estimation of gibberellins from different Fusarium strains. Gibberellins were extracted from 28 strains of Fusarium, out of which six strains of Fusarium were isolated from soil of different parts of India and 22 strains were procured from the Indian Type Culture Collection, Indian Agricultural Research Institute, New Delhi. Extracts were analyzed for qualitative and quantitative estimation of gibberellins by thin layer chromatography and HPLC, respectively. On the basis of quantitative analysis of produced gibberellins by HPLC, they were categorized as low, moderate, and high gibberellin producing strain. For the first time, Fusarium solani was also reported as high GA3 producing strain.  相似文献   
10.
The construction and electrodes characteristics of poly(vinylchloride) (PVC)-based polymeric membrane electrode (PME) and coated graphite electrode (CGE), incorporating 1,3-alternate thiacalix[4]crown as ionophore for estimation of Hg(II) ions, are reported here. The best potential response was observed for PME-1 having membrane composition of: ionophore (6.2 mg), PVC (100.0 mg), 2-nitrophenyl octyl ether (2-NPOE; 200.0 mg), and sodium tetraphenyl borate (NaTPB; 2.0 mg); for CGE-1 with the membrane composition: ionophore (3.5 mg), PVC (40.0 mg), 2-NPOE (80.0 mg), and NaTPB (2.0 mg). The electrodes exhibits Nernstian slope of 29.16 mV/decade with PME-1 and 30.39 mV/decade with CGE-1 for Hg(II) ions over wide concentration range, i.e., 1.0?×?10?1 to 5.0?×?10?6?M with PME-1 and 1.0?×?10?1 to 5.0?×?10?7?M with CGE-1. Lower detection limits were found to be 9.77?×?10?6?M for PME-1 and 7.76?×?10?7?M for CGE-1 with response time varying from 10 to 20 s. Also, these electrodes work within pH range of 2.0–6.0 for PME-1 and 1.5–6.5 for CGE-1. Overall, CGE-1 has been found to be better than PME-1. CGE-1 has been used as indicator electrode for the potentiometric titration of Hg(II) ions with EDTA as well as successfully applied for determination of Hg(II) content in wastewater, insecticide, dental amalgam, and ayurvedic medicines samples with very good performance (0.9974 correlation coefficient in the comparison against volumetric method).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号