首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有3条查询结果,搜索用时 140 毫秒
1
1.
We examined the influence of several hydrological and meteorological parameters on the migratory movements of ayu Plecoglossus altivelis altivelis in central Japan. When comprehensively evaluating rivers and ayu behaviour on a catchment scale, the subjects of analysis typically include human activities and hydrological and meteorological phenomena. However, limiting analyses to such factors may be too restrictive when human activities are being conducted. Accordingly, we incorporated a biological viewpoint into the evaluation method, analysing hydrological data (river discharge, river water temperature, sea water temperature) to determine watershed characteristics and examining the relationship between these characteristics and the habitat conditions of ayu. Then we constructed a numerical model for ayu migratory runs that incorporated ayu ecology and watershed characteristics. Analyses of ayu movements from a lower estuarine dam demonstrated that downstream displacements were associated with high water flows of more than 200 m3 s−1 at the beginning of summer. We conclude that it is important to consider the effects of environmental parameters on the movements of different fish species to understand the causes of spatial variation in fish distribution in lowland rivers.  相似文献   
2.
Dry and wet depositions were sampled daily in Tsukuba, Japan, in spring 2007. Temporal variations in the dry and wet deposition fluxes of dust and water-soluble chemical species were controlled largely by air mass origin, the water vapor mixing ratio, and Asian dust events. The contribution of local sources to dry deposition of dust was large when the wind speed was high. Dry deposition fluxes of water-soluble chemical species were larger in humid air masses than in dry air masses. Wet deposition fluxes of dust and water-soluble chemical species indicated that air masses that passed over dust source regions and industrial regions became mixed with the maritime air masses over the coastal site of the Asian continent and western part of the Japanese islands. The total deposition of dust was 4220 mg m?2 month?1, and that of water-soluble chemical species ranged from 10 to 636 mg m?2 month?1. Wet deposition fluxes of the total deposition flux of dust accounted for 72% and those of water-soluble chemical species was for 72–96%. In particular, the largest wet deposition occurred during a single Asian dust event on 3 April. This event accounted for 23% (950 mg m?2 month?1) of the monthly dust deposition flux and for 2–28% (0.43–51 mg m?2 month?1) of the monthly deposition flux of water-soluble chemical species. This result implies that the wet deposition flux associated with even one sporadic Asian dust event can have extensive impacts on both terrestrial and oceanic ecosystems in East Asia.  相似文献   
3.
Decades-long monitoring of anthropogenic radionuclides in the atmospheric deposition in Tsukuba, Japan suggests not only the substantial impacts of the Asian dust (Kosa) on the deposition but also the possible change of the Kosa source region, especially during springs of the 2000s. In order to know more about such change, 4 single wet deposition events occurred in the spring of 2007 were scrutinized. The largest anthropogenic radionuclides wet deposition was supplied by the April 2–4 event. It brought several tens % of the monthly depositions (April 2007) of the dust (residue) mass (4.5 g m?2) and anthropogenic radionulides (90Sr: 16, 137Cs: 97 and Pu: 3 mBq m?2). None of the events observed fulfilled both criteria of the specific activities and 90Sr/137Cs activity ratio to the Tsukuba soil; they did not exhibit local soil dust signature. The Kosa events in fact have extensive impacts on the atmospheric environment over Japan in spring season. Considering the elevated specific activities as well as greater 137Cs/90Sr activity ratio in the deposited dust, it is hypothesized that the dust source areas in Asian continent would be shifting from the arid zone to the desert-steppe zone suffering from desertification during the 2000s. This type of the Kosa may be called as the ‘new-regime Kosa’. Chemical observation in the far downwind region of the Kosa dust could allow us to know possible shift in the source regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号