首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
综合类   1篇
基础理论   10篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有11条查询结果,搜索用时 390 毫秒
1.
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.  相似文献   
2.
3.
自古以来。水就在地球的河流、湖泊和地下蓄水层中不断流淌着。维系着万物的生息和繁衍。从亚洲湄公河畔星星点点的渔村到墨西哥科罗拉多河三角洲的农灌区。水对生命延续的重要作用至今从未有过改变。  相似文献   
4.
5.
Abstract:  Reintroduction of fire and grazing, alone or in combination, has increasingly been recognized as central to the restoration of North American mixed-grass and tallgrass prairies. Although ecological studies of these systems are abundant, they have generally been observational, or if experimental, have focused on plant species diversity. Species diversity measures alone are not sufficient to inform management, which often has goals associated with life-form groups and individual species. We examined the effects of prescribed fire, light cattle grazing, and a combination of fire and grazing on three vegetation components: species diversity, groups of species categorized by life-form, and individual species. We evaluated how successful these three treatments were in achieving specific management goals for prairies in the Iowa Loess Hills (U.S.A.). The grazing treatment promoted the greatest overall species richness, whereas grazing and burning and grazing treatments resulted in the lowest cover by woody species. Burning alone best achieved the management goals of increasing the cover and diversity of native species and reducing exotic forb and (predominantly exotic) cool-season grass cover. Species-specific responses to treatments appeared idiosyncratic (i.e., within each treatment there existed a set of species attaining their highest frequency) and nearly half of uncommon species were present in only one treatment. Because all management goals were not achieved by any one treatment, we conclude that management in this region may need refining. We suggest that a mosaic of burning and grazing (alone and in combination) may provide the greatest landscape-level species richness; however, this strategy would also likely promote the persistence of exotic species. Our results support the need to consider multiple measures, including species-specific responses, when planning and evaluating management .  相似文献   
6.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   
7.
8.
Abstract: Statements of extinction will always be uncertain because of imperfect detection of species in the wild. Two errors can be made when declaring a species extinct. Extinction can be declared prematurely, with a resulting loss of protection and management intervention. Alternatively, limited conservation resources can be wasted attempting to protect a species that no longer exists. Rather than setting an arbitrary level of certainty at which to declare extinction, we argue that the decision must trade off the expected costs of both errors. Optimal decisions depend on the cost of continued intervention, the probability the species is extant, and the estimated value of management (the benefit of management times the value of the species). We illustrated our approach with three examples: the Dodo (Raphus cucullatus), the Ivory‐billed Woodpecker (U.S. subspecies Campephilus principalis principalis), and the mountain pygmy‐possum (Burramys parvus). The dodo was extremely unlikely to be extant, so managing and monitoring for it today would not be cost‐effective unless the value of management was extremely high. The probability the Ivory‐billed woodpecker is extant depended on whether recent controversial sightings were accepted. Without the recent controversial sightings, it was optimal to declare extinction of the species in 1965 at the latest. Accepting the recent controversial sightings, it was optimal to continue monitoring and managing until 2032 at the latest. The mountain pygmy‐possum is currently extant, with a rapidly declining sighting rate. It was optimal to conduct as many as 66 surveys without sighting before declaring the species extinct. The probability of persistence remained high even after many surveys without sighting because it was difficult to determine whether the species was extinct or undetected. If the value of management is high enough, continued intervention can be cost‐effective even if the species is likely to be extinct.  相似文献   
9.
10.
Threats to Avifauna on Oceanic Islands   总被引:1,自引:0,他引:1  
Abstract:  Results of the study by Blackburn et al. (2004 a ) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions. In our model geographical properties of islands, such as island area and isolation, were considered constraints on biological factors, such as the number of introduced mammalian predators and existing number of avifauna, that can directly or indirectly influence extinction. Of the variables we tested, island area had the greatest total influence on the threat of extinction due to its direct and indirect effects on the size of island avifauna. Larger islands had both a greater number of threatened bird species and more avifauna, increasing the number of species that could become threatened with extinction. Island isolation also had a significant, positive, and direct effect on threats to island avifauna because islands farther from the mainland had fewer current extant avifauna. Time since European colonization had a significant negative, but relatively weaker, influence on threats compared with the traditional biogeographic factors of island area and distance to the mainland. We also tested the hypothesis that the amount of threat is proportionally lower on islands that have had more extinctions (i.e., there is a "filter effect"). Because the proportion of bird extinctions potentially explained only 2.3% of the variation in the proportion of threatened species on islands, our results did not support this hypothesis. Causal modeling provided a powerful tool for examining threat of extinction patterns of known and hypothesized pathways of influence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号