首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
基础理论   2篇
污染及防治   1篇
评价与监测   1篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  1990年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
Elie Gaget  Diego Pavón-Jordán  Alison Johnston  Aleksi Lehikoinen  Wesley M. Hochachka  Brett K. Sandercock  Alaaeldin Soultan  Hichem Azafzaf  Nadjiba Bendjedda  Taulant Bino  Luka Božič  Preben Clausen  Mohamed Dakki  Koen Devos  Cristi Domsa  Vitor Encarnação  Kiraz Erciyas-Yavuz  Sándor Faragó  Teresa Frost  Clemence Gaudard  Lívia Gosztonyi  Fredrik Haas  Menno Hornman  Tom Langendoen  Christina Ieronymidou  Vasiliy A. Kostyushin  Lesley J. Lewis  Svein-Håkon Lorentsen  Leho Luigujõe  Włodzimierz Meissner  Tibor Mikuska  Blas Molina  Zuzana Musilová  Viktor Natykanets  Jean-Yves Paquet  Nicky Petkov  Danae Portolou  Jozef Ridzoň  Samir Sayoud  Marko Šćiban  Laimonas Sniauksta  Antra Stīpniece  Nicolas Strebel  Norbert Teufelbauer  Goran Topić  Danka Uzunova  Andrej Vizi  Johannes Wahl  Marco Zenatello  Jon E. Brommer 《Conservation biology》2021,35(3):834-845
Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993–2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.  相似文献   
3.
The adsorption of phenol, p-chlorophenol and mercuric ions from aqueous solution onto activated carbon has been studied in fixed bed columns. The influence of varying parameters such as bed depth, solution flowrate and pollutant concentration has been studied. The Bed Depth Service Time has been used to analyse the experimental data and identify design correlations. Furthermore, an optimization procedure based on the Empty Bed Residence Time has been applied to the data.  相似文献   
4.
The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号