首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
基础理论   1篇
  1982年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The quantitative extent to which the large-scale organized water motion in the surface waters of lakes and reservoirs, known as Langmuir circulation, affects the distribution and settling of algae and other suspended particles is not known and has thus been ignored in conventionally used water-quality models. Since the distribution and settling of these particles is important in determining water quality, this study set out to investigate these effects. Current literature which discusses this problem is reviewed and a mathematical model is developed based on the two-dimensional advection-diffusion mass transport describing the temporal and spatial distribution of suspended particles in a typical Langmuir cell; the Langmuir circulation flow field and turbulent diffusion coefficients are empirically modelled by relating them to environmental parameters.The results show that Langmuir circulation does affect particle distribution and settling. For particles with small sinking speeds, such as the lighter algae, the circulation causes intense mixing, resulting in essentially uniform distribution of particles over the cell (as assumed in the ‘well-mixed compartment model’). For particles with high sinking velocities, however, aggregation can occur, giving rise to significant reduction in sinking loss when compared with that predicted by conventional models. For diatoms, reductions of 6% and higher can occur depending on which conventionally used model is being considered, while for silt and sand particles in a cell of large width-to-depth ratio a reduction of more than 60% is possible.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号