首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
环保管理   3篇
基础理论   6篇
污染及防治   5篇
评价与监测   2篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2000年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
In this study an abiotic process was suggested to evaluate the behaviour of Pyrimethanil (antibotrytic fungicide) in real matrices. This process consists of a photodegradation of the fungicide carried out in the presence of iron(III) in three types of buffer; acetate, phosphate and citrate. The experimental results show that the nature of buffered solutions influences both the rate of disappearance of Pyrimethanil and, in the case of citrate, also the kind of by-products formed during the photodegradation process. For each case examined, the breakdown products were identified by using liquid chromatography (LC) or gas chromatography (GC), coupled with mass spectrometry (MS). The degradation pathways of the fungicide were proposed and the relative kinetic constants were evaluated. The abiotic photodegradation process shows the possibility of different pathways for Pyrimethanil degradation in environmental matrices such as the soil, plants and foodstuffs, where iron (free and/or bonded) is a natural component.  相似文献   
2.
Rates of biogeochemical processes often vary widely in space and time, and characterizing this variation is critical for understanding ecosystem functioning. In streams, spatial hotspots of nutrient transformations are generally attributed to physical and microbial processes. Here we examine the potential for heterogeneous distributions of fish to generate hotspots of nutrient recycling. We measured nitrogen (N) and phosphorus (P) excretion rates of 47 species of fish in an N-limited Neotropical stream, and we combined these data with population densities in each of 49 stream channel units to estimate unit- and reach-scale nutrient recycling. Species varied widely in rates of N and P excretion as well as excreted N:P ratios (6-176 molar). At the reach scale, fish excretion could meet >75% of ecosystem demand for dissolved inorganic N and turn over the ambient NH4 pool in <0.3 km. Areal N excretion estimates varied 47-fold among channel units, suggesting that fish distributions could influence local N availability. P excretion rates varied 14-fold among units but were low relative to ambient concentrations. Spatial variation in aggregate nutrient excretion by fish reflected the effects of habitat characteristics (depth, water velocity) on community structure (body size, density, species composition), and the preference of large-bodied species for deep runs was particularly important. We conclude that the spatial distribution of fish could indeed create hotspots of nutrient recycling during the dry season in this species-rich tropical stream. The prevalence of patchy distributions of stream fish and invertebrates suggests that hotspots of consumer nutrient recycling may often occur in stream ecosystems.  相似文献   
3.
Stoeckel, James A., Jade Morris, Elizabeth Ames, David C. Glover, Michael J. Vanni, William Renwick, and María J. González, 2012. Exposure Times to the Spring Atrazine Flush Along a Stream-Reservoir System. Journal of the American Water Resources Association (JAWRA) 48(3): 616-634. DOI: 10.1111/j.1752-1688.2011.00633.x Abstract: We used enzyme-linked immunosorbent assay to examine reservoir-mediated shifts in spring to fall exposure of aquatic organisms to the spring atrazine pulse over four years in a Midwestern stream-reservoir system. Peak atrazine concentrations in the major inflowing stream exceeded 10 μg/l in all four years. The reservoir had a beneficial effect in two of four years by diluting atrazine below the 10 μg/l threshold. However, during the other two years, exposure times above 10 μg/l were approximately doubled in the reservoir compared to the major inflowing stream. Thresholds of 3 and 5 μg/l were exceeded during all four years in the reservoir. The uplake and downlake reservoir sites were four to five times more likely to exceed these thresholds and aquatic organisms were subjected to longer exposure times above these thresholds compared to the inflowing stream. Release of elevated atrazine concentrations from the reservoir extended exposure times in the outflowing stream. This effect was most pronounced just below the dam. Aquatic organisms upstream of the reservoir were most likely to experience acute exposures whereas organisms within and immediately downstream of the reservoir were more likely to experience chronic exposures. The ubiquity of reservoirs and the annual spring herbicide flush highlight the importance of considering the presence and relative location of reservoirs when assessing risk to aquatic communities as well as locations of drinking water intakes.  相似文献   
4.
Animals can be important in nutrient cycling in particular ecosystems, but few studies have examined how this importance varies along environmental gradients. In this study we quantified the nutrient cycling role of an abundant detritivorous fish species, the gizzard shad (Dorosoma cepedianum), in reservoir ecosystems along a gradient of ecosystem productivity. Gizzard shad feed mostly on sediment detritus and excrete sediment-derived nutrients into the water column, thereby mediating a cross-habitat translocation of nutrients to phytoplankton. We quantified nitrogen and phosphorus cycling (excretion) rates of gizzard shad, as well as nutrient demand by phytoplankton, in seven lakes over a four-year period (16 lake-years). The lakes span a gradient of watershed land use (the relative amounts of land used for agriculture vs. forest) and productivity. As the watersheds of these lakes became increasingly dominated by agricultural land, primary production rates, lake trophic state indicators (total phosphorus and chlorophyll concentrations), and nutrient flux through gizzard shad populations all increased. Nutrient cycling by gizzard shad supported a substantial proportion of primary production in these ecosystems, and this proportion increased as watershed agriculture (and ecosystem productivity) increased. In the four productive lakes with agricultural watersheds (>78% agricultural land), gizzard shad supported on average 51% of phytoplankton primary production (range 27-67%). In contrast, in the three relatively unproductive lakes in forested or mixed-land-use watersheds (>47% forest, <52% agricultural land), gizzard shad supported 18% of primary production (range 14-23%). Thus, along a gradient of forested to agricultural landscapes, both watershed nutrient inputs and nutrient translocation by gizzard shad increase, but our data indicate that the importance of nutrient translocation by gizzard shad increases more rapidly. Our results therefore support the hypothesis that watersheds and gizzard shad jointly regulate primary production in reservoir ecosystems.  相似文献   
5.
This paper describes the determination of 3,5-DCA in commercial composts, a common metabolite in a class of fungicides, and dicarboximides (Vinclozolin, Chlozolinate, Iprodione, Procymidone) which are commonly used in agriculture. The extracts, obtained in acetonitrile by sonication, are analysed by HPLC/DAD without clean-up. This method has shown several advantages: reduced manipulation of samples, good recovery (80-90%) and good reproducibility (RSD% <7). The limit of detection (DL) of the analytical method has been estimated as 15 microg/kg for the common metabolite, and 35-145 microg/kg for the four fungicides in the matrices.  相似文献   
6.
Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.  相似文献   
7.
The fuel matrix used in Brazil is unique around the world. The intensive use of hydrated ethanol, gasohol (gasoline with 25% v/v of ethanol), compressed natural gas (CNG), and biodiesel leads to a peculiar composition of the urban atmosphere. From 1998 to 2002 an increase in formaldehyde levels was observed and since then, a reduction. This work presents a monitoring campaign that was executed from March 2004 to February 2009 by sampling at early morning on every sunny Wednesday for a total of 183 samples. The results indicate a strong reduction in formaldehyde levels from 2004 (average of 135.8 μg m?3 with SD 28.4 μg m?3) to 2009 (average of 49.3 μg m?3 with SD 27.4 μg m?3). The levels of acetaldehyde showed a slight reduction from 2004 (average of 34.9 μg m?3 with SD 8.0 μg m?3) to 2009 (average of 26.8 μg m?3 with SD 11.5 μg m?3). Comparing the results with the concurrent evolution of the fleet and of fuel composition indicates that the observed formaldehyde levels could be associated with the increase in ethanol use and in CNG use by engines with improved technology over the first converted CNG engines. Modelling studies using the OZIPR trajectory model and the SAPRC chemical mechanism indicate that formaldehyde is the main ozone precursor in Rio de Janeiro and acetaldehyde is the forth one.  相似文献   
8.
The research was carried out in order to verify the influence that light, oxygen, and microbial activity have on the degradability of pyrimethanil (PYR) in soil. The products of degradation were also identified and their evolution in time evaluated. The results indicate that the molecule is more persistent in the absence of light, oxygen, and microbial activity. The order of importance of these three factors is as follows: light < microbial activity < oxygen. The following products of degradation were identified: (1) benzoic acid, (2) cis,cis-muconic acid, (3) hydroxyl-4,6-dimethyl-2-pirimidinamine, (4) N'-ethyl-N-hydroxyformamidine, and (5) 4,6-dimethyl-2-piridinamine, which appeared different from those reported in literature for the degradation of PYR in abiotic conditions. This result suggests that the degradation in soil is mainly biotic.  相似文献   
9.
Vanni A  Gamberini R  Calabria A  Nappi P 《Chemosphere》2000,41(9):1431-1439
The main metabolites formed from Iprodione and Procymidone during the composting process have been isolated and identified by HPLC-DAD-MSD. After addition of the fungicides to the composting pile, we monitored the reaction of the two analytes and the formation of their degradation products for eight months. We verified the nature of the metabolites by comparison with those hypothesised in the literature and by comparison with the behaviour of an abiotic process in aqueous acetonitrile pH 6 and at 35 degrees C. After taking into account the different kinetic behaviours of the fungicides on degradation in compost and hydro-organic solution, breakdown pathways are proposed for biodegradation.  相似文献   
10.
A bunch of tiny individuals—Individual-based modeling for microbes   总被引:1,自引:0,他引:1  
The individual-based (aka agent-based) approach is now well established in ecological modeling. Traditionally, most applications have been to organisms at higher trophic levels, where the importance of population heterogeneity (intra-population variability), complete life cycles and behavior adapted to internal and external conditions has been recognized for some time. However, advances in molecular biology and biochemistry have brought about an increase in the application of individual-based modeling (IBM) to microbes as well. This literature review summarizes 46 IBM papers for bacteria in wastewater treatment plants, phytoplankton in ocean and inland waters, bacteria in biofilms, bacteria in food and other environs, and “digital organisms” and “domesticated computer viruses” in silico. The use of IBM in these applications was motivated by population heterogeneity (45%), emergence (24%), absence of a continuum (5%), and other unknown reasons (26%). In general, the challenges and concepts of IBM modeling for microbes and higher trophic levels are similar. However, there are differences in the microbe population dynamics and their environment that create somewhat different challenges, which have led to somewhat different modeling concepts. Several topics are discussed, including producing, maintaining and changing population heterogeneity (different life histories, internal variability, positive feedback, inter-generation memory), dealing with very large numbers of individuals (different up-scaling methods, including representative space vs. super-individual, number vs. biomass based, discrete vs. continuous kinetics, various agent accounting methods), handling space, simulating interactions with the extracellular environment (hybrid Eulerian–Lagrangian approach), modeling agent–agent interaction (self-shading, predation, shoving) and passive transport (random walk with spatially variable diffusivity, well-mixed reactors). Overall, the literature indicates that the application of IBM to microbes is developing into a mature field. However, several challenges remain, including simulating various types of agent–agent interactions (formation and function of colonies or filaments, sexual reproduction) and even smaller individuals (viruses, genes). Further increases in intracellular detail and complexity in microbe IBMs may be considered the combination of systems biology and systems ecology, or the new field of systems bioecology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号