首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
环保管理   3篇
基础理论   8篇
  2011年   1篇
  2008年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Conservation Genetics of the Endangered Isle Royale Gray Wolf   总被引:5,自引:0,他引:5  
Abstract. The small group of wolves on Isle Royale has been studied for over three decades as a model of the relationship between large carnivores and their prey. During the last ten years the population declined from 50 individuals to as few as 12 individuals. The causes of this decline may be food shortages, disease, or reduced genetic variability. We address the issues of genetic variability and relationships of Isle Royale wolves using allozyme electrophoresis, mtDNA restriction-site analysis, and multilocus hypervariable minisatellite DNA analysis (genetic fingerprinting). Our results indicate that approximately 50% of the allozyme heterozygosity has been lost in the island population, a decline similar to that expected if no immigration had occurred from the mainland. The genetic fingerprinting data indicate that the seven sampled Isle Royale wolves are as similar as captive populations of siblings. Surprisingly, the Isle Royale wolves have an mDNA genotype that is very rare on the mainland, being found in only one of 144 mainland wolves ThFF suggests that the remaining Isle Royale wolves areprobably derived from a single female founder  相似文献   
2.
3.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   
4.
Theoretical constructs, such as the river continuum concept, predict that the composition of benthic fauna in rivers will be different from that of headwater streams. There exists a need to modify, for use on larger rivers, the bioassessment techniques commonly used on small streams. Using aquatic macroinvertebrates and the “reference condition” approach, we developed and tested a multimetric index for use on the rivers of Idaho. Reference sites were selected to represent the best current conditions (i.e., least impacted) among Idaho rivers. The index performed well in distinguishing reference sites from sites displaying some form of anthropogenic impairment. Individual metrics used in the index included: number of EPT taxa, total number of taxa, percent dominant taxon, percent Elmidae, and percent predators. The index we developed for Idaho rivers was essentially a modification of a framework designed for small streams, suggesting that techniques, including data analysis, currently used for streams can be adapted for use on larger rivers. Adapting these methods for use in rivers is primarily a matter of (1) selecting metrics relevant to the rivers of interest; (2) expanding the field sampling to encompass the greater habitat area and, potentially, heterogeneity of rivers; and (3) selecting an appropriate form of data analysis. The approach we describe here should be applicable to geographic regions other than Idaho.  相似文献   
5.
There are numerous demands for the limited water supplies in the Rocky Mountain (USA) region, and controversies surrounding instream flows abound. A specific problem involves water diversions (i.e., small dams that shunt water out of stream channels) during the summer irrigation season. We developed an approach to assess the effects of restoration of natural or less-than-natural summer flows on trout that accounts for variation in habitat over long segments of low-gradient, alluvial-valley streams. The approach has utility for managers because it can be conducted with hydologic data, aerial photographs, topographic maps, and a spreadsheet without extensive fieldwork. We applied the approach by assessing the effects of different summer flows on abundance of brown trout (Salmo trutta) in several streams annually dewatered in the Salt River Valley of western Wyoming. The assessment approach can be calibrated for other trout species and areas of the Rocky Mountain region.  相似文献   
6.
Toward Best Practices for Developing Regional Connectivity Maps   总被引:3,自引:0,他引:3  
Abstract: To conserve ecological connectivity (the ability to support animal movement, gene flow, range shifts, and other ecological and evolutionary processes that require large areas), conservation professionals need coarse‐grained maps to serve as decision‐support tools or vision statements and fine‐grained maps to prescribe site‐specific interventions. To date, research has focused primarily on fine‐grained maps (linkage designs) covering small areas. In contrast, we devised 7 steps to coarsely map dozens to hundreds of linkages over a large area, such as a nation, province, or ecoregion. We provide recommendations on how to perform each step on the basis of our experiences with 6 projects: California Missing Linkages (2001), Arizona Wildlife Linkage Assessment (2006), California Essential Habitat Connectivity (2010), Two Countries, One Forest (northeastern United States and southeastern Canada) (2010), Washington State Connected Landscapes (2010), and the Bhutan Biological Corridor Complex (2010). The 2 most difficult steps are mapping natural landscape blocks (areas whose conservation value derives from the species and ecological processes within them) and determining which pairs of blocks can feasibly be connected in a way that promotes conservation. Decision rules for mapping natural landscape blocks and determining which pairs of blocks to connect must reflect not only technical criteria, but also the values and priorities of stakeholders. We recommend blocks be mapped on the basis of a combination of naturalness, protection status, linear barriers, and habitat quality for selected species. We describe manual and automated procedures to identify currently functioning or restorable linkages. Once pairs of blocks have been identified, linkage polygons can be mapped by least‐cost modeling, other approaches from graph theory, or individual‐based movement models. The approaches we outline make assumptions explicit, have outputs that can be improved as underlying data are improved, and help implementers focus strictly on ecological connectivity.  相似文献   
7.
8.
Forks in the Road: Choices in Procedures for Designing Wildland Linkages   总被引:5,自引:0,他引:5  
Abstract:  Models are commonly used to identify lands that will best maintain the ability of wildlife to move between wildland blocks through matrix lands after the remaining matrix has become incompatible with wildlife movement. We offer a roadmap of 16 choices and assumptions that arise in designing linkages to facilitate movement or gene flow of focal species between 2 or more predefined wildland blocks. We recommend designing linkages to serve multiple (rather than one) focal species likely to serve as a collective umbrella for all native species and ecological processes, explicitly acknowledging untested assumptions, and using uncertainty analysis to illustrate potential effects of model uncertainty. Such uncertainty is best displayed to stakeholders as maps of modeled linkages under different assumptions. We also recommend modeling corridor dwellers (species that require more than one generation to move their genes between wildland blocks) differently from passage species (for which an individual can move between wildland blocks within a few weeks). We identify a problem, which we call the subjective translation problem, that arises because the analyst must subjectively decide how to translate measurements of resource selection into resistance. This problem can be overcome by estimating resistance from observations of animal movement, genetic distances, or interpatch movements. There is room for substantial improvement in the procedures used to design linkages robust to climate change and in tools that allow stakeholders to compare an optimal linkage design to alternative designs that minimize costs or achieve other conservation goals.  相似文献   
9.
Postfire Management on Forested Public Lands of the Western United States   总被引:1,自引:0,他引:1  
Abstract:  Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.  相似文献   
10.
Abstract:  Species-area relationships and island biogeography theory are commonly used to predict how species richness will decline with fragmentation. There are a variety of largely untested assumptions in these approaches, including the assumptions that populations are distributed uniformly before fragmentation, and that local extinctions are due to effects of small population sizes. If populations are not distributed uniformly, then populations can be abundant locally but rare globally. This would cause extinction rates to be smaller than predicted. We tested extinction theory by developing estimates of the number of plant species that should be present in small tallgrass prairie fragments and then testing the uniformity assumption by partitioning species richness into α (within site) and β (among site) components in Iowa prairies. Many more native prairie plant species were present in surveys of prairie fragments (491) than was predicted based on theory (27–207). A large proportion (75%) of the total species richness was β richness. We suggest that the high proportion of β richness was responsible for the shallow species-area slopes and the lower than expected number of species losses and that a better understanding of what determines β diversity will improve predictions of fragmentation effects on richness of plants. We also suggest that plants in prairie remnants may be best conserved by protecting different prairie types rather than by protecting a few large areas containing a single prairie type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号