首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
2.
Verberk WC  Bilton DT  Calosi P  Spicer JI 《Ecology》2011,92(8):1565-1572
Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.  相似文献   
3.
Encroachment of tall grasses and shrubs in coastal dunes has resulted in loss of vegetation heterogeneity. This is expected to have negative effects on animal diversity. To counteract encroachment and develop structural heterogeneity grazing is a widely used management practice. Here, we aim to functionally interpret changes in vegetation composition and configuration following grazing management on habitat suitability for sand lizards. Aerial photographs taken over a period of 16 years were used to quantify changes in vegetation composition. A GIS-based method was developed to calculate habitat suitability for sand lizards in a spatially explicit manner, encompassing differences in vegetation structure and patch size. From 1987 to 2003 dune vegetation shifted from small patches of moss and sand to larger patches covered by shrubs and grasses. Grazing management did not have any significant effect on the overall level of heterogeneity, measured as habitat suitability for sand lizards. However, on a more local scale highly suitable patches in 1987 were deteriorating whereas unsuitable patches became more suitable in 2003. This inversion results from a broad shift with shrubs being a limiting habitat element in 1987 to sandy patches being the limiting element in 2003. Future changes are believed to negatively impact sand lizards. The habitat suitability model has proven to be a useful tool to functionally interpret changes in coastal dune vegetation heterogeneity from an animal’s perspective. Further research should aim to include multiple species operating on different scale levels to fully capture the natural landscape dynamics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号