首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   3篇
污染及防治   3篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 203 毫秒
1
1.
Environmental Geochemistry and Health - In this study, soil washing is applied for the remediation of heavy-metal (Pb, Cu and Zn) contaminated paddy soil located near an abandoned mine area. FeCl3...  相似文献   
2.
Jin GZ  Lee SJ  Kang JH  Chang YS  Chang YY 《Chemosphere》2008,70(9):1568-1576
Polyethylene (PE) and polyvinyl chloride (PVC) are the leading plastics in total production in the world. The incineration of plastic-based materials forms many chlorinated compounds, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). In this study the addition of goethite (alpha-FeOOH) was investigated to determine its suppressing effect on the emission of PCDD/Fs and hexachlorobenzene (HCB) during the combustion of wastes containing PE and PVC. Goethite was being considered since it acts as a dioxin-suppressing catalyst during incineration. Results showed that incorporation of goethite greatly reduced the generation of PCDD/Fs and HCB in the exhaust gas and fly ash. The concentration of PCDD/Fs in flue gas decreased by 45% for lab-scale and 52% for small incinerator combustion experiments, where the goethite ratios in feed samples were 0.54% and 0.34%, respectively. Under the same conditions, the concentration of HCB in flue gas decreased by 88% and 62%, respectively. The present study showed a possible mechanism of the suppressing effect of the goethite for PCDD/F formation. It is likely that iron chlorides react with particulate carbon to form organo-chlorine compounds and promote PCDD/F formation in the gas phase. XRD analysis of combustion ash revealed that the goethite was partially dehydrated and converted to alpha-Fe(2)O(3) and Fe(3)O(4) but no iron chlorides formation. Therefore the goethite impregnated plastics can contribute the reduction of PCDD/Fs and HCB in the exhaust gas during incineration of MSW.  相似文献   
3.
The herbaceous plant Echinochloa crusgalli var. frumentacea is highly resistant to a wide range of heavy metal concentrations. In this study we tested the phytoextraction capacity of E. crusgalli var. frumentacea. Specifically, we compared the effect of EDTA on lead (Pb) accumulation in two groups of plants: those sown in lead contaminated soil and those transplanted to the contaminated soil as seedlings. The result of the time development of the Pb concentrations in the plants in the seedling and seed groups shows that for the seedling group, the effect of adding EDTA to the Pb-contaminated soil was even more pronounced in the shoots than the roots, which showed Pb concentrations 32-fold higher. Compared to the seedling group, the Pb concentrations in the roots of plants in the seed group were approximately 5 times higher in controls and 2 to 10 times higher in the presence of EDTA. Collectively, these results might be considered that EDTA elevates the bioavailability of Pb in soil and this native species is particularly suited to use in Pb phytoextraction.  相似文献   
4.
Amelioration of acidic soil using various renewable waste resources   总被引:1,自引:0,他引:1  
In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.  相似文献   
5.
Immobilization of lead in contaminated firing range soil using biochar   总被引:3,自引:0,他引:3  
Soybean stover-derived biochar was used to immobilize lead (Pb) in military firing range soil at a mass application rate of 0 to 20 wt.% and a curing period of 7 days. The toxicity characteristic leaching procedure (TCLP) was performed to evaluate the effectiveness of the treatment. The mechanism responsible for Pb immobilization in military firing range soil was evaluated by scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray absorption fine structure (XAFS) spectroscopy analyses. The treatment results showed that TCLP Pb leachability decreased with increasing biochar content. A reduction of over 90 % in Pb leachability was achieved upon treatment with 20 wt.% soybean stover-derived biochar. SEM-EDX, elemental dot mapping and XAFS results in conjunction with TCLP leachability revealed that effective Pb immobilization was probably associated with the pozzolanic reaction products, chloropyromorphite and Pb-phosphate. The results of this study demonstrated that soybean stover-derived biochar was effective in immobilizing Pb in contaminated firing range soil.  相似文献   
6.
Phenol removal by n/m Fe in the presence of H2O2 was highly effective. Increasing the amounts of n/m Fe and H2O2?increased the phenol removal rate. Phenol removal was decreased with an increase in the concentration of phenol. The natural pH (6.9) of the solution was highly effective for phenol removal. The pseudo-first-order kinetics was best fitted for the degradation of phenol. The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) (<0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effects of the dosages of n/mFe, pH, concentration of phenol and amount of H2O2 on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H2O2; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant (k) was increased as the amounts of n/m Fe and H2O2 increased. Conversely, the value of k was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H2O2 and n/m Fe.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号