首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
基础理论   2篇
污染及防治   9篇
  2023年   1篇
  2013年   2篇
  2011年   3篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 243 毫秒
1.
Three ordered mesoporous silicas (OMSs) with different pore sizes and pore architectures were prepared and modified with amine functional groups by a postgrafting method. The carbon dioxide (CO2) adsorption on these amine-modified OMSs was measured by using microbalances at 348 K, and their adsorption capacities were found to be 0.2-1.4 mmol g(-1) under ambient pressure using dry 15% CO2. It was found experimentally that the CO2 adsorption capacity and adsorption rate were attributed to the density of amine groups and pore volume, respectively. A simple method is described for the production of densely anchored amine groups on a solid adsorbent invoking direct incorporation of tetraethylenepentamine onto the as-synthesized OMSs. Unlike conventional amine-modified OMSs, which typically show CO2 adsorption capacity less than 2 mmol g(-1), such organic template occluded amine-OMS composites possessed remarkably high CO2 uptake of approximately 4.6 mmol g(-1) at 348 K and 1 atm for a dry 15% CO2/nitrogen feed mixture. The enhancement of 8% in CO2 adsorption capacity was also observed in the presence of 10.6% water vapor. Durability tests done by cyclic adsorption-desorption revealed that these adsorbents also possess excellent stability.  相似文献   
2.
Abstract

Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L?1, respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L?1, respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   
3.
This is the first report showing reduction of particle matter and PAHs from incense burning by addition of oyster shell. Worshiping ancestors and gods by burning incense sticks and joss paper is a very important tradition in many Asian regions. More than 45 % of families in Taiwan burn incense twice a day. Unlike joss paper burning, most of the incense burning occurs indoors, thus creating a risk for human health. Previous reports have indeed evidenced toxicity of incense, notably due to particulate matter and polycyclic aromatic hydrocarbons (PAHs). However, there are few methods to reduce particle matter and PAHs from incense burning. We hypothesize that oyster shell may be used to reduce incense fumes toxicity. Indeed a large amount of unused oyster shell is discarded due to increasing seafood consumption. Here, two types of incense were made in the laboratory, and then 5–30 % of oyster shells were added to the incense to study the reduction of particle matter and PAHs. Results show that reduction of particle matter and PAH emission increased with oyster shell addition. The reduction of emission factors is ?35 % for mean particle matter, ?21 % for particle-phase PAHs, and ?37 % for benzo[a]pyrene equivalent concentration (BaPeq), using 30 % oyster shell additive. The addition of 10 % oyster shell reduces the burning time by 8.3 min, increases the burning rate by 3.4 mg/min, and reduces particle matter by 6.4 mg/g incense, particle-phase PAHs by 0.67 μg/g incense, and BaPeq by 0.23 μg/g incense. The reductions of particle matter, particle-phase PAHs, and BaPeq correspond to about 640 metric tons, 67, and 23 kg, respectively, per year. Our findings will help to produce safer and cleaner incense.  相似文献   
4.
This study investigated the emissions of carbonyl compounds (CBCs) and regulated harmful matters (traditional pollutants) from an HDDE (heavy-duty diesel engine) at one low load steady-state condition, 24.5% of the max load (40 km h?1), using five test fuels: premium diesel fuel (D100), P100 (100% palm-biodiesel), P20 (20% palm-biodiesel + 80% premium diesel fuel), PF80P20 (80% paraffinic fuel + 20% palm-biodiesel), and PF95P05 (95% paraffinic fuel + 5% palm-biodiesel). Experimental results indicate that formaldehyde was the major carbonyl in the exhaust, accounting for 70.3–75.4% of total CBC concentrations for all test fuels. Using P100 and P20 instead of D100 in the HDDE increased CBC concentrations by 9.74% and 2.89%, respectively. However, using PF80P20 and PF95P05 as alternative fuels significantly reduced CBC concentrations by 30.3% and 24.2%, respectively. Using PF95P05 instead of D100 decreased CBCs by 30.3%, PM by 11.1%, THC by 39.0%, CO by 34.0%, NOx by 24.3%, and CO2 by 7.60%. The wide usage of paraffinic–palmbiodiesel blends as alternative fuels could protect the environment. However, it should be noted that only one engine operated at one low load steady-state condition was investigated.  相似文献   
5.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   
6.
Environmental Chemistry Letters - The global energy demand has been projected to rise over 28% by 2040, calling for more renewable resources such as lignocellulosic biomass to produce biofuels, and...  相似文献   
7.
The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the tempospatial distribution of PM10 over the coastal region.  相似文献   
8.
Formaldehyde and acetaldehyde are toxic carcinogens so their reductions in diesel-engine emissions are desirable. This study investigated emissions of carbonyl compounds (CBCs) from an HDDE (heavy-duty diesel engine) at US transient cycle test, using five test fuels: premium diesel fuel (D100), P100 (100% palm-biodiesel), P20 (20% palm-biodiesel + 80% premium diesel fuel), PF80P20 (80% paraffinic fuel + 20% palm-biodiesel), and PF95P05 (95% paraffinic fuel + 5% palm-biodiesel). Experimental results indicate that formaldehyde was the major carbonyl in the exhaust, accounting for 70.1–76.2% of total CBC concentrations for all test fuels. In comparison with D100 (172 mg BHP?1 h?1), the reductions of formaldehyde and acetaldehyde emission factor for P100, P20, PF80P20, and PF95P05 were (?16.8%, ?61.8%), (?10.0%, ?39.0%), (21.3%, 1.10%), and (31.1%, 19.5%), respectively. Using P100 and P20 instead of D100 in the HDDE increased CBC concentrations by 14.5% and 3.28%, respectively, but using PF80P20 and PF95P05 significantly reduced CBC concentrations by 30.3% and 23.7%, respectively. Using P100 and P20 instead of D100 (2867 ton yr?1) in the HDDE increased CBC emissions by 240 and 224 ton yr?1, respectively, but using PF80P20, and PF95P05 instead of D100 in the HDDE decreased CBC emissions by 711 and 899 ton yr?1, respectively. The above results indicate that the wide usage of paraffinic–palmbiodiesel blends as alternative fuels could protect the environment.  相似文献   
9.
This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period.  相似文献   
10.
This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号