首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   4篇
废物处理   1篇
环保管理   1篇
综合类   7篇
污染及防治   2篇
评价与监测   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
流域氮素主要输出途径及变化特征   总被引:3,自引:2,他引:1  
流域农业面源输出氮素是湖泊流域水体中氮的主要来源之一,对水环境安全造成了极大威胁.不同流域间地形、水文、植被覆盖等因子的差异及气象条件的变化,造成氮的输出途径具有流域异质性及时间变化特征.本研究以高原湖泊典型流域——凤羽河流域为例,基于2011-06~2013-05期间径流水量、水质高频监测数据,应用基流分割的方法,通过分析流域产流与氮素输出途径的季节性变化,探讨了流域氮素输出的主要途径及变化特征.结果表明,基流是高原湖泊流域水量输出的主要形式和总氮输出的主要途径;基流输出水量及总氮负荷分别占流域总输出水量的80. 0%和流域总氮输负荷的71. 1%;降雨显著增加了流域水量和总氮负荷的输出量,同时改变了总氮的输出途径;降雨导致地表径流量增加,进而使流域输出水量和总氮输出负荷中地表径流途径的比重升高;当地表径流占流域输出水量的比重约达40%以上时,流域总氮输出的主要途径由基流转变为地表径流;监测周期内,地表径流输出的总氮负荷占流域总输出负荷的比重最高达65. 6%.  相似文献   
2.
为探索浅层地下水氮浓度及水位波动对土壤剖面中氮转化功能基因丰度的影响,以洱海近岸农田原状土壤剖面为对象,研究了模拟常规氮浓度的浅层地下水进行水位波动(SND)和持续淹水(SNF),以及无氮浓度的浅层地下水位波动(0ND)后土壤剖面氮浓度和氮转化功能基因丰度的变化,探讨了土壤因子与功能基因丰度的关系。结果表明:SNF、SND和0ND处理较试验前土壤剖面中溶解性总氮(TDN)浓度分别降低了44%、21%和30%,NO3-N浓度分别降低了55%、28%和38%。同时,0ND和SNF处理较SND处理土壤剖面中反硝化功能基因丰度分别降低20%和1%,厌氧氨氧化功能基因丰度则分别增加68%和7%,硝化功能基因丰度分别降低34%和增加23%,土壤含水率(MC)、NH4+-N、NO3-N和TDN均为功能基因丰度变化的重要驱动因子。土壤剖面持续淹水会显著降低溶解性氮浓度,浅层地下水波动及水中氮浓度引起的土壤剖面干湿交替和氮浓度变化是氮转化功能基因丰度变化的主要驱动力。  相似文献   
3.
农田面源污染是洱海富营养化的重要原因之一。本文利用在洱海北部地区收集的实地调研数据,从化肥施用与流失和秸秆利用情况,分析了该地区的农田面源污染现状。结果表明:该地区的农田面源污染主要来源于大蒜田与玉米田的氮磷流失,以及大蒜秸秆与玉米秸秆的焚烧或丢弃。从补偿对象与主体、补偿标准、补偿环节与方式、配套政策四个方面,探讨了农田面源污染控制的补偿政策,并结合在洱海北部地区的实地调研资料,分析了测土配方施肥和秸秆还田两种农田面源污染控制技术采纳的补偿政策案例;提出政府应在基础设施建设、技术指导、教育培训、"无公害"农产品市场建设等方面给予政策支持。  相似文献   
4.
骨胶在低温低浊水处理中的试验研究   总被引:4,自引:0,他引:4  
在分析骨胶基本性质的基础上,对其处理冬季松花江水的效果进行了研究。结果表明,骨胶作为助凝剂,与硫酸铝共同使用,处理低温低浊水很有效。  相似文献   
5.
间接电合成对甲基苯甲醛减废工艺   总被引:6,自引:0,他引:6  
孙治荣  胡翔  胡万里  周定 《化工环保》1999,19(2):108-113
采用间接电合成法生产对甲基苯甲醛,不仅产品的产率高,而且由于实现了电解媒质的循环使用,使整个过程无废液排放,既节省了资源,又保证了环境。该法以对二甲苯为原料,其反应过程为:Mn(Ⅱ)电解氧化生成Mn(Ⅲ);Mn(Ⅲ)氧化对二甲苯生成对甲基苯甲醛。上述反应,前者的电流效率较高,为85%左右;后者的产品产率较高,约为69%。  相似文献   
6.
洱海流域乡镇尺度上人类活动对净氮输入量的影响   总被引:1,自引:0,他引:1  
人类活动引起的氮素过量输入已经成为引起水体富营养化及其他生态危害的主要原因.为了研究人类活动对流域氮素的影响,本文基于洱海流域16个乡镇行政单元的统计数据,考虑流动人口的影响,利用NANI模型估算洱海流域乡镇尺度的人类活动净氮输入量(net anthropogenic nitrogen inputs,NANI).结果表明,2014年洱海流域NANI总量为29.81×10~3t,单位面积输入强度(以氮计)为10 986 kg·(km~2·a)-1,显著高于我国平均水平.当地旅游人口带入的食品氮输入为0.26×10~3t,占到了流域居民食品氮输入的8%.从氮素的输入量的构成来看,肥料输入是最大的贡献源,占到了流域净氮输入的47%,其次为食品饲料的净氮输入.在空间分布上,乡镇单元的NANI分布呈现明显区域化特征,从流域整体上看呈现北高南低的特点.耕地或人口集中的乡镇NANI强度偏高,洱海流域具有较大的氮素污染风险.  相似文献   
7.
降雨强度对洱海流域凤羽河氮磷排放的影响   总被引:8,自引:7,他引:1  
降雨形成的径流携带各种陆面物质进入河流湖泊是导致水质变化的重要因素,而不同降雨强度下的河流氮磷输出特征均有所差异,因此,为阐明雨强对高原湖泊典型流域污染物排放的影响,本研究以洱海流域上游的凤羽河为研究对象,基于连续3 a(2011~2013年)的出口断面水质水量监测,分析了4种降雨强度(小雨、中雨、大雨、暴雨)对水体氮磷浓度和形态的影响.结果表明,降雨强度对凤羽河氮磷排放的影响显著,所有组分的氮和磷浓度平均值在小雨(10 mm)和中雨(10~25mm)时较低,在大雨(25~50 mm)和暴雨(50~100 mm)时较高;氨氮(NH_4+-N)(57. 14%~76. 85%)占总氮(TN)的质量分数大于颗粒态氮(PN)(23. 15%~42. 86%),溶解态总磷(TDP)(22. 73%~28. 00%)占总磷(TP)的质量分数小于颗粒态磷(PP)(72. 00%~77. 27%);不同形态的氮浓度比较为:TN NH_4+-N PN;不同形态的磷浓度比较为:TP PP TDP.  相似文献   
8.
通过对凤羽河小流域出水口断面进行定位连续监测,计算流域出水量和氮磷排放量,解析了流域氮磷排放量的时间变化特征,以期为小流域氮磷排放量计算、农业管理措施调控、削减流域氮磷排放量提供科学依据.结果表明,凤羽河小流域年度水流量为0.99亿m3,7—9月雨季水流量占全年的43.70%.小流域总氮(TN)的年排放量为139.8 t,可溶性总氮(DTN)是氮的主要排放形式,占TN的71.16%,颗粒态氮(PN)占TN的28.84%.小流域总磷(TP)的年排放量为27.7 t,颗粒态磷(PP)是磷的主要排放形式,占TP的76.47%,可溶性总磷(DTP)占TP的23.53%.7—9月雨季氮磷排放量占全年总量的比例分别为55.33%和77.81%.降雨是影响流域径流过程的重要因素,同时,流域内农业管理措施对径流量和氮磷排放具有较大影响.  相似文献   
9.
采用高温厌氧膨胀颗粒污泥床(EGSB)反应器处理低浓度、难降解聚氯乙烯(PVC)离心母液废水,以天津市经济技术开发区污水处理厂序批式活性污泥法(SBR)工艺好氧污泥和生物接触氧化法处理PVC离心母液废水污泥的混合污泥为接种污泥,以葡萄糖模拟废水为基质,不断增加PVC离心母液废水所占比例的方法驯化厌氧微生物,实现了系统的成功启动。系统启动期间,进水有机负荷(以COD计)和水力停留时间分别保持在0.2 kg/(m3.d)和50 h左右,出水COD去除率和pH分别稳定在80%和8.0左右。结果表明,添加共代谢基质能利用基质间的协同作用缓解有毒物质对微生物的毒性作用,显著提高了废水的可生化性。通过采用改变水质、保持稳定负荷实现EGSB反应器处理PVC离心母液废水的成功启动证明,该启动方法具有良好的稳定性和可靠性。  相似文献   
10.
土壤酶是驱动土壤碳氮素转化的重要生物因素。该研究在滇西洱海流域油菜-水稻水旱轮作农田设置5个处理(1个不施肥对照,1个施化肥对照,3个有机物料配施化肥处理)的长期定位试验,考察土壤碳氮水解酶活性特征及有机碳源物料施用条件下土壤碳氮水解酶活性动态变化特征,结合Pearson相关性分析和RDA冗余分析,解析土壤酶活性对有机碳输入的响应特征。结果表明,单施化肥处理对β-1,4-葡萄糖苷酶(GC)活性的影响不显著(P≥0.05),但显著提高β-1,4-乙酰氨基葡萄糖苷酶(NAG)活性(P<0.05);有机碳源物料配施化肥各处理则均显著提高2种土壤碳氮水解酶活性(P<0.05)。GC酶和NAG酶的活性与土壤有机质(OM)和全氮(TN)含量呈极显著正相关(P<0.01);土壤GC和NAG酶活性均与土壤碳氮比(C/N)极显著正相关(P<0.01);土壤OM和TN对碳氮水解酶活性影响的解释度最高。基于酶活性和土壤养分及碳氮比关系分析,需要施用适宜C/N的有机碳源配施氮肥,通过调控GC酶和NAG酶活性,提高土壤碳氮转化速率,从而维持土壤C/N在适宜范围。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号