首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  国内免费   7篇
安全科学   1篇
废物处理   1篇
环保管理   1篇
综合类   13篇
基础理论   1篇
污染及防治   5篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2011年   1篇
  2007年   2篇
  2006年   4篇
  2004年   5篇
排序方式: 共有22条查询结果,搜索用时 430 毫秒
1.
碱性高炉矿渣和多孔混凝土都有良好的净水性能,将碱性高炉矿渣作为掺合料制成掺高炉矿渣多孔混凝土(BSPC),对其处理模拟酸性水的效果进行研究。结果表明:经BSPC处理后,进水p H由2~3变成8.5~9.1。与普通多孔混凝土相比,添加高炉矿渣的混凝土对酸性水浊度、CODcr、TP和Cd的平均去除率依次提高了6.2%,8.8%,5.2%和4.5%,分别达到74.3%,74.5%,91.7%和86.5%。同时,BSPC孔隙率在处理酸性水前后有所下降,下降幅度较小,为6.2%,不影响BSPC对酸性水的处理。实验最后对混凝土表面白色絮状物进行了红外和XRD表征,初步分析其中含有CaCO_3、SiO_2和水化硅酸钙(C-S-H)等无机物,初步判定来源于BSPC的溶出物。  相似文献   
2.
介绍了在某处电子束氨法烟气脱硫脱硝(简称EA-FGD)工业试验装置上的试验结果,并对影响二氧化硫和氮氧化物脱除效率的主要因素进行了分析,指出了提高脱除效率,降低能耗的方向.  相似文献   
3.
温度是影响臭氧生成的关键气象因子,通常情况下,臭氧和温度呈显著正相关关系,即臭氧浓度随着温度的升高而上升.然而这种关系在极高温时可能发生改变,当温度超过某个阈值时,臭氧浓度呈下降趋势,称为臭氧抑制事件.臭氧抑制事件导致气候变化背景下未来空气质量预测具有更多不确定性.基于全国空气质量监测数据和气象观测数据,采用Z检验方法,系统分析了2013~2020年暖季(4~9月)我国臭氧抑制事件频次及临界温度(Tx)的时空特征,并分析了引起臭氧抑制事件发生的可能影响因素.结果表明,2013~2020年暖季,我国约有18%的站点发生臭氧抑制事件,发生频率较高的站点主要分布在四川、新疆、陕西等中国中西部地区,平均达到10次·a-1.发生臭氧抑制事件的Tx介于19.2~39.3℃,且大多数站点的Tx呈逐年上升趋势;Tx高值区主要分布在四川、重庆、湖南和湖北等中西部地区,而Tx低值区则集中在青藏高原一带.与Tx年变化趋势相反,2013~2020年暖季京津冀的臭氧抑制事件频率显著下降,汾渭平原、长三角和成渝地区的臭氧抑制事件频率呈"升高-降低-升高"变化特征.珠三角城市群极端高温抑制臭氧的作用最显著.此外,臭氧前体物(例如NO2)和气象条件(风速、风向)是导致臭氧抑制事件的可能原因.  相似文献   
4.
比较二花脸和皮特兰猪在2h运输过程中血浆ACTH、皮质醇、胰岛素和T3、T4水平的动态变化模式,以分析内分泌激素变化的品种特征.选用雄性二花脸猪10头,皮特兰猪6头,体重达20kg时安装颈静脉瘘管,1wk后运输试验,运输过程中不同时间点采集血样,放射免疫分析法测定血浆激素水平.上车后两品种猪ACTH水平缓慢上升,60min后达到峰值,下车后15min恢复至基础水平,运输过程中ACTH水平及变化幅度均未表现显著的品种差异;运输前皮质醇水平二花脸显著高于皮特兰猪,上车后两品种皮质醇均迅速上升,出发后15min达到峰值,下车后15min均快速恢复至基础水平,运输过程中皮特兰皮质醇上升的幅度显著高于二花脸猪;两品种胰岛素水平上车后均呈下降趋势,二花脸胰岛素水平总体上显著高于皮特兰猪;T3水平在上车后也表现快速下降,无论是T3水平还是其变化幅度均不表现显著的品种差异;皮特兰猪上车后T4水平稍微下降而二花脸猪显著下降,皮特兰T4水平总体显著高于二花脸猪.运输应激伴随血浆ACTH和皮质醇水平升高,而胰岛素、T3和T4水平下降,皮质醇水平升高的幅度能够反映猪的应激敏感性.图1参25  相似文献   
5.
脉冲放电等离子体烟气脱硫脱硝工业试验   总被引:4,自引:0,他引:4  
40000—50000Nm^3/h工业试验结果表明:烟气温度75℃-80℃,脱硫效率大于90%,脱硝效率大于40%,烟气温度90℃-95℃,脱硫效率大于80%,脱硝效率大于50%;能耗小于3.0Wh/Nm^2;随着温度升高,SO2热化学反应效率逐渐降低;随着氨硫化学计量比增大,氨泄漏逐渐增加,烟气温度90℃。95%,氨泄漏增加更为迅速。并分析了副产物的成分,阐述了脱硫脱硝的机理,探讨了烟气排放的温度。  相似文献   
6.
电子束氨法烟气脱硫工艺   总被引:4,自引:0,他引:4  
介绍了某热电厂的电子束氨法烟气脱硫脱硝工业试验装置和在该装置上进行的较全面的工艺研究,确定了影响SO2脱除效率的主要参数,为北京京丰热电EA-FGD工业示范工程设计提供了重要依据.  相似文献   
7.
基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.  相似文献   
8.
含氮化合物的排放、输送和沉降是生物地球化学氮循环的关键过程,对生态系统和气候变化具有重要影响.其中输送过程的定量化表征一直是困扰沉降来源识别的突出难点之一.为此,本研究采用WRF-EMEP模型模拟2015年我国大气氮干沉降时空分布特征,通过标准差椭圆(SDE)"质心"迁移法定量分析京津冀地区(BTH)、长江三角洲(YRD)和珠江三角洲(PRD)3大典型城市群的氮排放-干沉降输送过程,评估不同区域大气氮干沉降输送过程的季节差异和影响因素.研究结果表明,我国典型城市群氮干沉降通量呈现出散布于城市群周边50~200 km地区的空间分布格局,其中氧化态氮(NOy)和还原态氮(NHx)沉降的年平均通量水平分别为8.5 (6.0~22.0) kg ·hm-2·a-1和10.2 (6.0~31.0) kg ·hm-2·a-1.氧化态氮和还原态氮的输送方向均受大气环流运动主导:在同一城市群,各季节氧化态氮和还原态氮的输送方向保持一致;在不同城市群,二者的输送方向具有季节性差异:京津冀地区氮沉降春秋冬三季多向东及东南方向迁移,夏季向南迁移;受西太平洋副热带反气旋环流影响,长三角地区春夏季氮沉降向西迁移;珠三角地区氮沉降在春夏季往偏北方向迁移,秋冬两季向西南方向迁移.氧化态氮和还原态氮的输送距离受其化学性质主导:在相同气象条件下,氧化态氮传输距离约为还原态氮传输距离的1~2倍,使得氧化氮多沉降在城市群的域外,而还原态氮主要沉降在排放源周边区域.其中,不同城市群氮沉降的输送距离有一定差异,除夏季外,京津冀地区(127~541 km)和长三角地区(108~374 km)的输送距离高于珠三角地区(57~285 km),其中京津冀地区和珠三角地区沉降主要在域外,即两地的氮排放更易输送到周边地区.因此,在开展氮沉降生态效应相关研究时,应关注周边地区对本地氧化态氮输送的影响.  相似文献   
9.
在工业中试装置上进行了水蒸气/氨活化实验,同时开展了脉冲电源的调试运行、脱硫副产物收集一体化、工艺参数以及对副产物成份分析等实验。在烟气流量4500~11000m^3/h、反应器入口温度60-70℃、氨硫化学计量比约1:1、系统连续运行和采用一体化的单电场进行脱硫副产物收集的条件下.得到结果:水蒸气/氨活化脱硫效果明显,并且有较好的副产物收集功能,收集效率20%~30%;副产物中SO4^2-:SO3^2-大于95:5,脱硫效率稳定大于90%,副产物收率大于85%。  相似文献   
10.
从干剩余污泥中提取蛋白质的试验研究   总被引:3,自引:0,他引:3  
以上海市松江区某污水处理厂的剩余污泥为原料,采用酸水解法提取干污泥中的蛋白质,考查了固液比、水解温度、水解时间、pH对蛋白质提取效果的影响。试验结果表明,水解的最佳条件为:水解液的pH为1.25;水解温度为118℃;固液比为1∶3.5;水解时间为5.5h。在此基础上,从安全性和营养性两方面考虑,对提取液中重金属和氨基酸...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号