首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2020年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
The majority of dosimeters currently in use are synthetic and very expensive. Therefore, the study of the dosimetric characteristics of polyphenolic extracts of xerophytes is useful because drought stress causes an increase in the production of these cheap and natural compounds containing benzene rings. Here, the polyphenolic compounds were extracted from Rhamnus lycioides which was collected from Bou-Hedma National Park in Tunisia and identified using liquid chromatography-mass spectrometry (LC-MS). We investigated the impact of cobalt-60 (60Co) irradiation (0–30 kilogray (kGy)) on the color parameters of polyphenolic extracts of R. lycioides using the Konica Minolta CR 300 portable colorimeter and UV–Visible spectroscopy. The structural and morphological characteristics of the irradiated extracts were assessed using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). Overall, our results suggest that exposure to ionizing radiation (IR) of the polyphenolic components of the xerophyte R. lycioides has produced significant dose-dependent changes in their optical and morphological properties. Thus, these extracts can be valorized as biodosimeters in the dose range from 5 to 25 kGy.  相似文献   
2.
The age and shell growth rate of deep-sea hydrothermal bivalves were investigated for the first time using in situ chemical staining combined with high-resolution micro-increment analysis. A staining chamber developed for this purpose was applied to a patch of Bathymodiolus thermophilus mussels at 2,500 m depth at the 9°47′N vent field on the East Pacific Rise (EPR) in May 2010. This approach minimizes disturbance of the mussels in their habitat. Bathymodiolus thermophilus grows according to a circalunidian rhythm, with one increment formed each day, and displays tide-related growth rate variability. Based on the von Bertalanffy growth rate model, the largest shell collected (SL = 20.5 cm) would be 10.0 year old, with a growth rate of 4.2–1.1 cm year?1 as the shell ages. This fast growth rate is consistent with the instability of the environment in this section of the EPR and observed recolonization rates and could reflect a specific adaptation of this species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号