首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
污染及防治   4篇
评价与监测   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Environmental Science and Pollution Research - More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4)...  相似文献   
2.
Backfilling of open pit with sulfidic waste rock followed by inundation is a common method for reducing sulfide oxidation after mine closure. This approach can be complemented by mixing the waste rock with alkaline materials from pulp and steel mills to increase the system’s neutralization potential. Leachates from 1 m3 tanks containing sulfide-rich (ca.30 wt %) waste rock formed under dry and water saturated conditions under laboratory conditions were characterized and compared to those formed from mixtures. The waste rock leachate produced an acidic leachate (pH?<?2) with high concentrations of As (65 mg/L), Cu (6 mg/L), and Zn (150 mg/L) after 258 days. The leachate from water-saturated waste rock had lower concentrations of As and Cu (<2 μg/L), Pb and Zn (20 μg/L and 5 mg/L), respectively, and its pH was around 6. Crushed (<6 mm) waste rock mixed with different fractions (1–5 wt %) of green liquid dregs, fly ash, mesa lime, and argon oxygen decarburization (AOD) slag was leached on a small scale for 65 day, and showed near-neutral pH values, except for mixtures of waste rock with AOD slag and fly ash (5 % w/w) which were more basic (pH?>?9). The decrease of elemental concentration in the leachate was most pronounced for Pb and Zn, while Al and S were relatively high. Overall, the results obtained were promising and suggest that alkaline by-products could be useful additives for minimizing ARD formation.  相似文献   
3.

During the operation of a mine, waste rock is often deposited in heaps and usually left under ambient conditions allowing sulfides to oxidize. To focus on waste rock management for preventing acid rock drainage (ARD) formation rather than ARD treatment could avoid its generation and reduce lime consumption, costs, and sludge treatment. Leachates from 10 L laboratory test cells containing sulfide-rich (>?60% pyrite) waste rock with and without the addition of lime kiln dust (LKD) (5 wt.%) were compared to each other to evaluate the LKD’s ability to maintain near neutral pH and reduce the sulfide oxidation. Leaching of solely waste rock generated an acidic leachate (pH?<?1.3) with high concentrations of As (21 mg/L), Cu (20 mg/L), Fe (18 g/L), Mn (45 mg/L), Pb (856 μg/L), Sb (967 μg/L), S (17 g/L), and Zn (23 mg/L). Conversely, the addition of 5 wt.% LKD generated and maintained a near neutral pH along with decreasing of metal and metalloid concentrations by more than 99.9%. Decreased concentrations were most pronounced for As, Cu, Pb, and Zn while S was relatively high (100 mg/L) but decreasing throughout the time of leaching. The results from sequential extraction combined with element release, geochemical calculations, and Raman analysis suggest that S concentrations decreased due to decreasing sulfide oxidation rate, which led to gypsum dissolution. The result from this study shows that a limited amount of LKD, corresponding to 4% of the net neutralizing potential of the waste rock, can prevent the acceleration of sulfide oxidation and subsequent release of sulfate, metals, and metalloids but the quantity and long-term stability of secondary minerals formed needs to be evaluated and understood before this method can be applied at a larger scale.

  相似文献   
4.
Acid rock drainage (ARD) is a major problem related to the management of mining wastes, especially concerning deposits containing sulphide minerals. Commonly used tests for ARD prediction include acid–base accounting (ABA) tests and the net acid generation (NAG) test. Since drainage quality largely depends on the ratio and quality of acid-producing and neutralising minerals, mineralogical calculations could also be used for ARD prediction. In this study, several Finnish waste rock sites were investigated and the performance of different static ARD test methods was evaluated and compared. At the target mine sites, pyrrhotite was the main mineral contributing to acid production (AP). Silicate minerals were the main contributors to the neutralisation potential (NP) at 60% of the investigated mine sites. Since silicate minerals appear to have a significant role in ARD generation at Finnish mine waste sites, the behaviour of these minerals should be more thoroughly investigated, especially in relation to the acid produced by pyrrhotite oxidation. In general, the NP of silicate minerals appears to be underestimated by laboratory measurements. For example, in the NAG test, the slower-reacting NP-contributing minerals might require a longer time to react than is specified in the currently used method. The results suggest that ARD prediction based on SEM mineralogical calculations is at least as accurate as the commonly used static laboratory methods.  相似文献   
5.
Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99?‰ for the δ65Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in 65Cu compared to the soil. As a result of the same trial, the δ56Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal–organic complexation and weathering can modify particular isotopic signatures.  相似文献   
6.
Sulphidic residual products from ore processing may produce acid rock drainage, when exposed to oxygen and water. Predictions of the magnitude of ARD and sulphide oxidation rates are of great importance in mine planning because they can be used to minimize or eliminate ARD and the associated economic and environmental costs. To address the lack of field data of sulphide oxidation rate in fresh sulphide-rich tailings under near-neutral conditions, determination and simulation of the rate was performed in pilot-scale at Kristineberg, northern Sweden. The quality of the drainage water was monitored, along with oxygen and carbon dioxide concentrations. The chemical composition of the solid tailings was also determined. The field data were compared to predictions from simulations of pyrite oxidation using a 1-D numerical model. The simulations' estimates of the amount of Fe and S released over a seven year period (52 kg and 178 kg, respectively) were in reasonably good agreement with those obtained by analysing the tailings (34 kg and 155 kg, respectively). The discrepancy is probably due to the formation of secondary precipitates such as iron hydroxides and gypsum; which are not accounted for in the model. The observed mass transport of Fe and S (0.05 and 1.0 kg per year, respectively) was much lower than expected on the basis of the simulations and the core data. Neutralization reactions involving carbonates in the tailings result in a near-neutral pH at all depths except at the oxidation front (pH < 5), indicating that the dissolution of carbonates was too slow for the acid to be neutralized, which instead neutralized deeper down in the tailings. This was also indicated by the reduced abundance of solid Ca at greater depths and the high levels of carbon dioxide both of which are consistent with the dissolution of carbonates. It could be concluded that the near-neutral pH in the tailings has no decreasing effect on the rate of sulphide oxidation, but does reduce the concentrations of dissolved elements in the drainage water due to the formation of secondary minerals. This means that sulphide oxidation rates may be underestimated if determined from drainage alone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号