首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   2篇
环保管理   1篇
污染及防治   4篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha(-1) y(-1) and 60.4 ± 10.5 gAs ha(-1) y(-1)), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters.  相似文献   
3.
Peat soils as a source of lead contamination to upland fluvial systems   总被引:1,自引:0,他引:1  
Upland peat soils are generally regarded as effective sinks of atmospherically deposited lead. However, the physical process of erosion has the potential to transform peat soils from sinks to sources of lead contamination. Lead input and fluvial lead outputs (dissolved+particulate) were estimated for a contaminated and severely eroding peatland catchment in the southern Pennines, UK. Lead input to the catchment is 30.0+/-6.0gha(-1)a(-1) and the output from the catchment is 317+/-22.4gha(-1)a(-1). Suspended particulate matter accounts for 85% of lead export. Contaminated peat soils of the catchment are a significant source of lead to the fluvial system. This study has demonstrated strong coupling between the physical process of erosion and the mobilization of lead into the fluvial system. The process of peat erosion should therefore be considered when estimating lead outputs from peatland catchments, especially in the context of climate change.  相似文献   
4.
Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.  相似文献   
5.
Levels of acidic deposition have declined in Galloway over the last two decades. At the Round Loch of Glenhead this has led to a slight recovery from lake acidification, lake water pH rose by approximately 0.2 units between 1978 and 1989. The diatom flora of the lake has responded to this recovery and a clear floristic reversal dating to the late 1970s is apparent in the sediment cores studied. The detection of this reversibility trend, however, is dependent on the accumulation rate of individual cores. The trend could be detected only in cores with accumulation rates greater than 0.7 mm year(-1). It is also argued that sediment mixing has led to some loss of resolution of the sedimentary record.  相似文献   
6.
Atmospherically deposited lead in the upper layer of the heavily eroded peatlands of the Peak District, southern Pennines, UK, reaches concentrations in excess of 1,000 mg kg−1. Erosion of the upper peat layer in this region is releasing lead, associated with eroded peat particles, into the fluvial system. Understanding the process mechanisms that control dissolved lead concentrations in contaminated peatland streams is vital for understanding lead cycling and transport in peatland streams. Many headwater streams of the southern Pennines recharge drinking water reservoirs. Measurements in the Upper North Grain (UNG) study catchment show that mean sediment-associated and dissolved lead concentrations are 102 ± 39.4 mg kg−1 and 5.73 ± 2.16 μg l−1, respectively. Experimental evidence demonstrates that lead can desorb from suspended sediments, composed of contaminated peat, into stream waters. In-stream processing could therefore account for the elevated dissolved lead concentrations in the fluvial system of UNG.  相似文献   
7.
Critical loads have for several years been employed bypolicymakers to aid in the development of strategies for aciddeposition abatement. They provide an effects-based approachwhereby an acid deposition flux greater than the critical load(known as critical load exceedance) implies that long-termharmful effects on a selected target organism will occur.Implicit in this approach are two assumptions: first, theexceedance of a critical load will harm the target organism,and second, the severity of biological impact is related to themagnitude of exceedance. However, static models give noindication of when the predicted damage might occur. One suchmodel, the Steady-State Water Chemistry (SSWC) model, employs aseries of empirical relationships to derive the pre-industrial,baseline leaching rate of base cations from measured waterchemistry using the so-called `F-factor'. The SSWC model setsthe critical load relative to pre-industrial base cationleaching (a permanent buffer of acid deposition) and a selectedacid neutralizing capacity (ANC) value which corresponds with aknown likelihood of damage to a biological target organism.Here we interpret the meaning of critical load exceedance as aprediction of steady-state ANC, and explore the relationshipbetween exceedance of the critical load and current chemistry. We demonstrate that a critical loadexceedance with the SSWC model does not necessarily indicatethat the critical chemical threshold (zero ANC) has alreadybeen crossed, and there may be no correlation betweenexceedance and biological status. A reformulation of the SSWCmodel is proposed which provides a direct link between currentdeposition and current chemical conditions, and is thereforemore likely to indicate current biological damage. Thereformulation illustrates the discrepancy between currentchemical status and that predicted by the SSWC model atsteady-state, which is a function of the `F-factor'.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号