首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   1篇
污染及防治   5篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Sood A  Uniyal PL  Prasanna R  Ahluwalia AS 《Ambio》2012,41(2):122-137
Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.  相似文献   
2.
3.
Successful bioremediation of a phenol-contaminated environment requires application of those microbial strains that have acquired phenol tolerance and phenol-degrading abilities. A newly isolated strain B9 of Acinetobacter sp. was adapted to a high phenol concentration by growing sequentially from low- to high-strength phenol. The acclimatised strain was able to grow and completely degrade up to 14?mM of phenol in 136?h. The degradation rates were found to increase with an increase in the phenol concentration from 2.0 to 7.5?mM. The strain preferred neutral to alkaline pH range for growth and phenol degradation, with the optimum being pH 8.0. The optimum temperature for phenol degradation was found to be in the range of 30–35°C. Transmission electron micrographs showed a disorganised and convoluted cell membrane in the case of phenol-stressed cells, showing a major effect of phenol on the membrane. Enzymatic and gas chromatography-mass spectrometry studies show the presence of an ortho-cleavage pathway for phenol degradation. Efficient phenol degradation was observed even in the presence of pyridine and heavy metals as co-toxicants showing the potential of strain in bioremediation of industrial wastes. Application of strain B9 to real tannery wastewater showed 100% removal of initial 0.5?mM phenol within 48?h of treatment.  相似文献   
4.
Environmental Science and Pollution Research - In the present study, fermentative production of bacterial nanocellulose (BNC) by using Komagataeibacter xylinus strain SGP8 and characterization of...  相似文献   
5.
A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L?1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg?1 of DDT after 18-days of treatment.  相似文献   
6.
Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L?1 of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L?1 of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L?1 of Cr (VI) was observed with in 24 h. pH in the range of 6.0–8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L?1 Cr (VI), 246 mg L?1 total Cr, and 51 mg L?1 Ni, respectively, after 144 h of treatment in a batch mode.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号