首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
废物处理   8篇
环保管理   1篇
综合类   1篇
基础理论   1篇
污染及防治   26篇
评价与监测   2篇
社会与环境   2篇
灾害及防治   1篇
  2021年   1篇
  2018年   1篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   9篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1995年   1篇
  1988年   1篇
  1984年   4篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
The results from three long-term field manipulation studies of the impacts of increased nitrogen deposition (0–120 kg N ha?1 yr?1) on lowland and upland heathlands in the UK were compared, to test if common responses are observed. Consistent increases in Calluna foliar N content and decreases in litter C:N ratios were found across all sites, while increases in N leaching were not observed at any site over the range 0–80 kg ha?1 yr?1. However, the response of Calluna biomass did vary between sites, possibly reflecting site differences in nutrient status and management histories. Five versions of a simulation model of heathland responses to N were developed, each reflecting different assumptions about the fate and turnover of soil N. Model outputs supported the deduction from mass balance calculations at two of the field sites that N additions have resulted in an increase in immobilisation; the latter was needed to prevent the model overestimating measured N leaching. However, this version of the model significantly underestimated Calluna biomass. Model versions, which included uptake of organic N by Callunaand re-mobilisation of N from the soil organic store provided some improvement in the fit between modelled and field biomass data, but re-mobilisation also led to an overestimation of N leaching. Quantification of these processes and their response to increased N deposition are therefore critical to interpreting experimental data and predicting the long-term impacts of atmospheric deposition on heathlands and moorlands.  相似文献   
2.
Model estimates of NOy and NHx deposition across Britain for 1996 (5 km square resolution) were applied as explanatory variables to account for national-scale, fine-grained changes in plant species composition between 1990 and 1998. Plant species data were recorded from up to 27 fixed plots located within a stratified random sample of 596 1 km2. The response variable was a cover-weighted Ellenberg fertility score for each plot. Analyses were carried out separately for woodlands, semi-natural grasslands and heaths/bogs. Most of the variation in the botanical response variable occurred between plots within squares and so could not be explained by the model deposition data. NHx deposition estimates accounted for significant, but small components of between 1 km2 variation in the change in Ellenberg score in grasslands (5.6%) and heath/bogs (9.8%) but not woodlands. NOy deposition estimates were not significantly associated with vegetation change. Linear models provided the best fit and the slope of the relationship was lower for heath/bogs than grasslands. Further signal attribution at sub-kilometre square scales requires the development of fine-grained models of N deposition that can be generalised across regional sampling domains.  相似文献   
3.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   
4.
This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.  相似文献   
5.
Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent.  相似文献   
6.
The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni.  相似文献   
7.
Harmful bugs affect food production,directly by the qualitativeor quantitative reduction of the harvests,or indirectly while servinglike vectors of several illnesses of the plants and human[1].Many chemical products are used by human for a long time inthe…  相似文献   
8.
Modelling stomatal ozone flux across Europe   总被引:4,自引:0,他引:4  
A model has been developed to estimate stomatal ozone flux across Europe for a number of important species. An initial application of this model is illustrated for two species, wheat and beech. The model calculates ozone flux using European Monitoring and Evaluation Programme (EMEP) model ozone concentrations in combination with estimates of the atmospheric, boundary layer and stomatal resistances to ozone transfer. The model simulates the effect of phenology, irradiance, temperature, vapour pressure deficit and soil moisture deficit on stomatal conductance. These species-specific microclimatic parameters are derived from meteorological data provided by the Norwegian Meteorological Institute (DNMI), together with detailed land-use and soil type maps assembled at the Stockholm Environment Institute (SEI). Modelled fluxes are presented as mean monthly flux maps and compared with maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb or nl l(-1)), highlighting the spatial differences between these two indices. In many cases high ozone fluxes were modelled in association with only moderate AOT40 values. The factors most important in limiting ozone uptake under the model assumptions were vapour pressure deficit (VPD), soil moisture deficit (for Mediterranean regions in particular) and phenology. The limiting effect of VPD on ozone uptake was especially apparent, since high VPDs resulting in stomatal closure tended to co-occur with high ozone concentrations. Although further work is needed to link the ozone uptake and deposition model components, and to validate the model with field measurements, the present results give a clear indication of the possible implications of adopting a flux-based approach for future policy evaluation.  相似文献   
9.
It has been proposed that stomatal flux of ozone would provide a more reliable basis than ozone exposure indices for the assessment of the risk of ozone damage to vegetation across Europe. However, implementation of this approach requires the development of appropriate models which need to be rigorously tested against actual data collected under field conditions. This paper describes such an assessment of the stomatal component of the model described by Emberson et al. (2000. Modelling stomatal ozone flux across Europe. Environmental Pollution 110). Model predictions are compared with field measurements of both stomatal conductance (g(s)) and calculated ozone flux for shoots of mature Norway spruce (Picea abies) growing in the Tyrol Mountains in Austria. The model has been developed to calculate g(s) as a function of leaf phenology and four environmental variables: photosynthetic flux density (PFD), temperature, vapour pressure deficit (VPD) and soil moisture deficit (SMD). The model was run using climate data measured on site, although the SMD component was omitted since the necessary data were not available. The model parameterisation for Norway spruce had previously been collected from the scientific literature and therefore established independently from the measurement study. Overall, strong associations were found between model predictions and measured values of stomatal conductance to ozone (GO(3)) and calculated stomatal ozone flux (FO(3)). Average diurnal profiles of GO(3) and FO(3) showed good agreement between the field data and modelled values except during the morning period of 1990. The diurnal pattern of ozone flux was determined primarily by PFD and VPD, as there was little diurnal variation in ozone concentration. In general, the model predicted instances of high ozone flux satisfactorily, indicating its potential applicability in identifying areas of high ozone risk for this species.  相似文献   
10.
Trifolium repens and Lolium perenne were exposed as both monocultures and two-species mixtures to an episodic rural ozone regime in large, well-watered containers within solardomes for 12 weeks. There were reductions in biomass for T. repens, but not L. perenne, and the proportion of T. repens decreased in ozone-exposed mixtures compared to the control. In addition, leaf biomass of T. repens was maintained at the expense of biomass partitioning to the stolons. The decreased growth corresponded with decreased photosynthetic capacity for T. repens, however, by the end of the exposure there was also decreased photosynthetic capacity of L. perenne, a species previously considered insensitive to ozone. The observed decreases in photosynthetic efficiency and capacity in elevated ozone indicate that the ability of such ubiquitous vegetation to act as a sink for atmospheric carbon may be reduced in future climates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号