首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2011年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Loss of volatile hydrocarbons from an LNAPL oil source   总被引:1,自引:0,他引:1  
The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene?o-xylene, benzene, C(6) and C(10-12)n-alkanes>C(7)-C(9)n-alkanes>m-xylene, cyclohexane, and 1- and 2-methylnaphthalene>1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C(6)-C(9)n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.  相似文献   
2.
A 16-year study of a hydrocarbon plume shows that the extent of contaminant migration and compound-specific behavior have changed as redox reactions, most notably iron reduction, have progressed over time. Concentration changes at a small scale, determined from analysis of pore-water samples drained from aquifer cores, are compared with concentration changes at the plume scale, determined from analysis of water samples from an observation well network. The small-scale data show clearly that the hydrocarbon plume is growing slowly as sediment iron oxides are depleted. Contaminants, such as ortho-xylene that appeared not to be moving downgradient from the oil on the basis of observation well data, are migrating in thin layers as the aquifer evolves to methanogenic conditions. However, the plume-scale observation well data show that the downgradient extent of the Fe2+ and BTEX plume did not change between 1992 and 1995. Instead, depletion of the unstable Fe (III) oxides near the subsurface crude-oil source has caused the maximum dissolved iron concentration zone within the plume to spread at a rate of approximately 3 m/year. The zone of maximum concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) has also spread within the anoxic plume. In monitoring the remediation of hydrocarbon-contaminated ground water by natural attenuation, subtle concentration changes in observation well data from the anoxic zone may be diagnostic of depletion of the intrinsic electron-accepting capacity of the aquifer. Recognition of these subtle patterns may allow early prediction of growth of the hydrocarbon plume.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号