首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
综合类   2篇
污染及防治   4篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was degraded using cobalt-peroximonosulfate (Co/PMS) advanced oxidation process (AOP). Three Co concentrations (0.00, 0.25 and 0.50 mM) and five peroximonosulfate (PMS) concentrations (0, 5, 8, 16 and 32 mM) were tested. Maximum degradation reached was 88% using dark Co/PMS in 126 minutes when 0.25 mM of cobalt and 32 mM of PMS were used. Complete atrazine degradation was achieved when the samples were irradiated by the sun under the same experimental conditions described. Tests for identification of intermediate products allowed identification and quantification of deethylatrazine in both dark and radiated conditions. Kinetic data for both processes was calculated fitting a pseudo-first order reaction rate approach to the experimental data. Having kinetic parameters enabled comparison between both conditions. It was found that the kinetic approach describes data behavior appropriately (R2 ≥ 0.95). Pseudo-kinetic constants determined for both Co/PMS processes, show k value of 10?4 for Co/PMS and a k value of 10?3 for Co/PMS/ultraviolet (UV). This means, that, with the same Co/PMS concentrations, UV light increases the reaction rate by around one order of magnitude than performing the reaction under dark conditions.  相似文献   
2.
Degradation of aldrin (1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5-8-dimethanonaphthalene), heptachlor (1H-1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano indene), dieldrin (1aalpha,2beta,2aalpha,3beta,6beta,6aalpha,7beta,7aalpha)-3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-d-methanonaphtha[2,3-b]oxirene, and heptachlor epoxide (1aalpha, 1bbeta,2alpha,5alpha,5alphabeta,6beta,6aalpha-2,3,4,5,6,7,7-Heptachloro-1a,1b,5,5a,6,6a-hexahydro-2,5-methano-2H-inden[1,2-b]-oxirene) was tested using free cultures of Pseudomonas fluorescens under controlled conditions. Pesticide concentrations were monitored by gas chromatography during 120 h. Percentages of degradation and biodegradation rates (BDR) were calculated. Data showed a trend suggesting a relation between chemical structure and degradability. Degradation kinetics for each pesticide tested showed that the highest degradation rates were found in the first 24 h. Kinetics data were adjusted to an empirical equation in order to predict their behavior, and the correlation coefficients obtained were satisfactory. Gas chromatography/mass spectrometry (GC/MS) analysis of the final extracts allowed the identification of chlordene and monodechlorodieldrin, which have been reported as final metabolite produced in the biodegradation of this kind of compounds. Regarding adsorption of pesticides on activated vegetal carbon, we concluded that removal efficiencies between 95.45 and 97.18% can be reached, depending on the pesticide and the carbon dose applied. The values for K from the Freundlich equation were quite similar for the four pesticides (between 1.0001 and 1.04), whereas the n values were quite different for each pesticide in the following order of affinity: dieldrin > aldrin > heptachlor epoxide > heptachlor. Equilibrium times, very important for scaling up the process, were between 43 min and 1 h, for the heptachlor epoxide and the heptachlor, respectively.  相似文献   
3.
为评价三唑酮在大白菜施用后的环境安全性,建立了GC测定蔬菜及土壤中三唑酮残留的方法,进行露地与设施栽培条件三唑酮在大白莱和土壤中的消解动态和最终残留研究.在大白菜和土壤中的最低检测质量分数均为0.001 mg/kg,三唑酮的平均加标回收率为81.5%~110.6%,变异系数为1.32%~6.04%.消解动态试验为2倍推荐使用剂量施药1次,三唑酮在设施栽培大白菜的半衰期分别为2.72~3.30 d和3.21~3.35 d;露地栽培为2.35~2.87 d和2.30~3.12 d.设施栽培大白菜中三唑酮残留量与用药量正相关,随着施药量的增加,消解速度减慢,残留量相应增大.研究可为制定三唑酮设施栽培大白菜上最大残留限量和合理使用准则以及风险评估提供科学依据.  相似文献   
4.
Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32 degrees C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55-99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36-78%.  相似文献   
5.
针对当前黑臭河道治理工作中出现的黑臭反复,长效性难保持问题,以某内源污染严重的重度黑臭河道为例实施原位生态修复。第1阶段采用超微气泡富氧(移动式曝气船+定点式曝气设备)和生物活化技术进行水体和底质修复,削减内源污染,改善生境;第2阶段应用定点式曝气设备、生态浮岛、水生植物净化、水生动物多样性调控进行生态修复,营造健康稳定的生态系统。经过近4个月的治理,治理区水质由重度黑臭稳定达到GB 3838—2002《地表水环境质量标准》Ⅴ类水标准,水体COD、NH3-N和TP含量分别为28.79,0.36,0.19 mg/L,去除率分别达到45%、98%和85%以上,治理后水体澄清,可见多种水生动物和沉水植物,河道底质呈现自然泥土色泽,在未进行清淤处理的情况下即达到了泥水共治的效果,水环境质量得到显著提升,实现了长效治理。  相似文献   
6.
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was degraded using cobalt-peroximonosulfate (Co/PMS) advanced oxidation process (AOP). Three Co concentrations (0.00, 0.25 and 0.50 mM) and five peroximonosulfate (PMS) concentrations (0, 5, 8, 16 and 32 mM) were tested. Maximum degradation reached was 88% using dark Co/PMS in 126 minutes when 0.25 mM of cobalt and 32 mM of PMS were used. Complete atrazine degradation was achieved when the samples were irradiated by the sun under the same experimental conditions described. Tests for identification of intermediate products allowed identification and quantification of deethylatrazine in both dark and radiated conditions. Kinetic data for both processes was calculated fitting a pseudo-first order reaction rate approach to the experimental data. Having kinetic parameters enabled comparison between both conditions. It was found that the kinetic approach describes data behavior appropriately (R2 > or = 0.95). Pseudo-kinetic constants determined for both Co/PMS processes, show k value of 10(-4) for Co/PMS and a k value of 10(-3) for Co/PMS/ultraviolet (UV). This means, that, with the same Co/PMS concentrations, UV light increases the reaction rate by around one order of magnitude than performing the reaction under dark conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号