首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   1篇
评价与监测   1篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 343 毫秒
1
1.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
2.

The distribution of arsenic (As) in environmental compartments is investigated in the Nalaikh Depression of N-Mongolia. In Nalaikh, lignite coal is mined by artisanal small-scale mining (ASM) approaches. Because As is often associated with sulfuric minerals in coal, it was hypothesized that enrichment of As is related to coal ASM. A second hypothesis considered coal combustion in power plants, and stoves are a key source of As in the local environment. Three mobilization and distribution scenarios were developed for potential As pathways in this semiarid environment. About 43 soil and 14 water sites were analyzed for As concentrations and meaningful parameters in soil and water. About 28 topsoil samples were analyzed in surface-subsurface pairs in order to identify potential eolian surface enrichment. Additionally, fluvial-alluvial sediments and geogenic and anthropogenic deposits were sampled. Water was sampled as surface water, groundwater, precipitation, and industrial water. Results show that As does not pose a ubiquitous risk in the Nalaikh Depression. However, locally and specifically in water, As concentrations may exceed the WHO guideline value for drinking water by up to a factor of 10. A carefully selected sampling strategy allows the evaluation of the distribution scenarios, which reveals a combination of (a) geogenic As in groundwater and distribution via surface water with (b) anthropogenic As redistribution via eolian pathways. An immediate linkage between As redistribution and coal mining is not evident. However, As distribution in fly ash from coal combustion in the local power plant and yurt settlements is the most likely As pathway. Hence, the results indicate the potential influence of diffuse, low-altitude sources on As emission to the environment. As such, this study provides a good example for As distribution under semiarid climate conditions influenced by geogenic and anthropogenic factors.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号