首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   2篇
环保管理   1篇
污染及防治   1篇
评价与监测   1篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
排序方式: 共有5条查询结果,搜索用时 12 毫秒
1
1.
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.  相似文献   
2.
To study the effects of elevated inputs of acidity and nitrogen (N), 1000 mmol m-2 a-1 of ammonium sulphate (NH4NO3) equivalent to an input of potential acidity of 2000 mmol m-2 a-1 was applied annually for 11 yr between 1983 and 1993 in a beech forest at Solling, Germany. Most of the applied NH4 + was nitrified in the litter layer and in the upper mineral soil. N in soil leachate quickly responded to the elevated input, but most of the applied N was stored in the soil or left the ecosystem via pathways other than soil output. Leaching of N from the soil increased until the last year of N addition. After the last N application, N fluxes decreased rapidly to low values. The buffering of acidity produced by the nitrification of the applied NH4 + was caused mainly by three different processes: (i) sulphur (S) retention, (ii) release of aluminium, (iii) release of base cations. Retention of S took place mostly in the subsoil. 72% of the S input was recovered in output after 14 years of the experiment. Due to the increased fluxes of mobile anions with soil solution, outputs of cations increased drastically.  相似文献   
3.
Sixty home made wine and sixty-four grape samples were collectedfrom five territories in Jordan, where grapes and wine aremostly producted. The collected samples were analyzed for themost used organochlorine pesticides (OCP) and organophosphorouspesticides (OPP) in Jordan, as well as for four heavy metals(Ni, Cu, Zn and Pb). The results showed that OCPs residues weredetected in 73% of the wine samples but no OPPs residue weredetected which is due to generally shorter half life of thelater pesticide. Grapes showed higher incident of contaminationthan wine, however, OCPs and OPPs with both short and longhalf-lives were detected. The OPPs were detected in only8.3% of the analyzed grape samples. Heavy metals showed higher valuesin grapes than in the wine samples and it was attributed toremoval of solids during wine preparation processes or throughcontamination of wine during storage. Most of the samples werebelow toxic limit.  相似文献   
4.
The objective of this study was to assess the effect of compost application on soil respiration and dissolved organic carbon (DOC) output of nutrient-depleted forest soils. An amount of 6.3 kg m(-2) mature compost was applied to the forest floor of European beech (Fagus sylvatica L.), Norway spruce (Picea abies Karst.), and Scots pine (Pinus sylvestris L.) stands at Soiling and Unterlüss, Germany. Cumulative soil respiration significantly increased by 499 g C m(-2) in the spruce stand at Unterlüss and by 274 g C m(-2) in the beech stand at Soiling following compost application whereas soil respiration of the other four stands was not affected. The increases in soil respiration of the two stands were explained by improved microbial decomposition of soil organic matter. The DOC concentrations and fluxes in throughfall and seepage water at 10- and 100-cm depths were determined from August 1997 to March 2000. In the control plots, cumulative DOC outputs at 10 cm ranged between 57 and 95 g C m(-2), with the highest rates in the pine stands. Compost treatment significantly increased cumulative DOC outputs by 31 to 69 g C m(-2) at 10 cm and by 0.3 to 6.6 g C m(-2) at 100 cm. The mineral soils between the 10- and 100-cm depths acted as significant sinks for DOC, as shown by much lower cumulative outputs at 100 cm of 3 to 11 g C m(-2) in the control and 6 to 16 g C m(-2) in the compost plots. Our results suggest that a single, moderate application of mature compost to nutrient-depleted forest soils has little effect on C losses to the atmosphere and ground water.  相似文献   
5.
Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号