首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
废物处理   2篇
环保管理   5篇
污染及防治   3篇
评价与监测   2篇
社会与环境   1篇
  2017年   1篇
  2016年   1篇
  2010年   1篇
  2008年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 109 毫秒
1.
Conflicts between industrial development and environmental conservation can be particularly acute when such development occurs in the vicinity of World Heritage sites. A key example is the Great Barrier Reef World Heritage Area (GBRWHA) in northeastern Australia, where a 2012 review by the World Heritage Council found that rapid port development inshore of the coral reef posed significant risks to local marine ecosystems. Such instances pose pressing challenges for decision‐makers seeking to manage World Heritage sites for multiple values and needs, including those of key stakeholder groups, such as local communities. There is increasingly a societal expectation that public decision‐making takes into account local views and priorities, and that companies seek a ‘social license to operate’. This research explored local community attitudes toward port development associated with the export of liquefied natural gas (LNG) and coal through the GBRWHA. Using data drawn from a survey and interviews, the research examined how a range of geographical factors, including proximity to gas infrastructure and the perceived impacts and risks of development to the local community, economy and environment shape community perceptions of the industry. Findings suggest that local attitudes toward gas and coal terminal development inshore of the GBRWHA are shaped predominantly by community perceptions of environmental impacts and risks associated with such infrastructure, in contrast to a broader public narrative that focuses largely on economic benefits. A complex combination of other factors, including social impacts, personal environmental values, community trust in industry, and equity in decision‐making and distribution of the risks and benefits of industrial development also contribute. Placed in a broader, global context, the findings have important implications for public decision‐making processes in Australia and elsewhere as they suggest that, for local communities, the perceived impacts of gas development on the environment may overshadow the benefits of industry.  相似文献   
2.
Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored.  相似文献   
3.
A field-based system used to quantify the response of acid grassland to reduced atmospheric nitrogen and sulphur deposition, and to investigate the effects of elevated soil temperature on acid grassland development is described. The system is based on 12 retractable roofs, covering undisturbed experimental plots of acid grassland and three controls. Nine roofs are used to exclude natural precipitation and three roofs used to retain emitted IR radiation at night. An irrigation system has been developed to simulate natural precipitation, allowing for the application of specific treatment regimes of ambient, reduced nitrogen and reduced nitrogen/sulphur deposition beneath the nine rain exclusion plots. Plant, soil parameters, leachate chemistry and gaseous fluxes are being monitored and initial results on soil water chemistry are described. Warming appeared to enhance nitrate concentrations in soil water but this was not sustained beyond the first year of treatment. In contrast, the deposition reduction treatments decreased soil water nitrate concentrations within a few weeks of reducing deposition. This was not observed for other solutes such as sulphate or ammonium suggesting a more direct link between deposition of nitrate and leaching losses.  相似文献   
4.
Two total maximum daily load (TMDL) studies were performed for Linville Creek in Rockingham County, Virginia, to address bacterial and benthic impairments. The TMDL program is an integrated watershed management approach required by the Clean Water Act. This paper describes the procedures used by the Center for TMDL and Watershed Studies at Virginia Tech to develop the Linville Creek TMDLs and discusses the key lessons learned from and the ramifications of the procedures used in these and other similar TMDL studies. The bacterial impairment TMDL was developed using the Hydrological Simulation Program-Fortran (HSPF). Fecal coliform loads were estimated through an intensive source characterization process. The benthic impairment TMDL was developed using the Generalized Watershed Loading Function (GWLF) model and the reference watershed approach. The bacterial TMDL allocation scenario requires a 100% reduction in cattle manure direct-deposits to the stream, a 96% reduction in nonpoint-source loadings to the land surface, and a 95% reduction in wildlife direct-deposits to the stream. Sediment was identified as the primary benthic stressor. The TMDL allocation scenario for the benthic impairment requires an overall reduction of 12.3% of the existing sediment loads. Despite the many drawbacks associated with using watershed-scale models like HSPF and GWLF to develop TMDLs, the detailed watershed and pollutant-source characterization required to use these and similar models creates information that stakeholders need to select appropriate corrective measures to address the cause of the water quality impairment when implementing the TMDL.  相似文献   
5.
Abstract: Computer simulation models are used extensively for the development of total maximum daily loads (TMDLs). Specifically, the Hydrological Simulation Program‐FORTRAN (HSPF) is used in Virginia for the development of TMDLs for bacteria impairments. HSPF estimates discharge from a reach using function tables (FTABLES). The FTABLE relates stream stage, surface area, and volume to discharge from a reach. In this study, five FTABLE estimation methods were assessed by comparing their effect on various simulation outputs. Four “field‐based” methods used detailed cross‐sectional data collected via site surveys. A fifth “digital‐based” method used digital elevation data in combination with the Natural Resources Conservation Service Regional Hydraulic Geometry Curves. Sets of FTABLEs created using each method were used in simulations of instream bacteria concentration for a Virginia watershed. Several statistics relating to instream bacteria including long‐term average concentration, die‐off, and the violation rate of Virginia’s bacteria criterion were compared. The pair‐wise Student’s t‐test was used for the comparison. The HSPF simulations that used FTABLES estimated from digitally based data consistently produced significantly higher long‐term average instream fecal bacteria concentrations, significantly lower instream fecal bacteria die‐off, which is related to differences in residence time in the streams, and significantly higher water quality criterion violation rates.  相似文献   
6.
CREAMS-PADDY, a modified version of the field-scale CREAMS model, simulates the hydrologic, sediment, and nutrient cycles in paddy fields. The CREAMS-PADDY model was applied to estimate the effects of using wastewater for irrigation on nutrient loads from paddy fields in Republic of Korea. The model was calibrated and validated using data from two rice paddy fields. The coefficient of determination between observed and simulated total nitrogen and total phosphorus were 0.92 and 0.57, respectively, for the calibration period and 0.84 and 0.73 for the validation period. Simulations showed that when using wastewater for irrigation, the total nitrogen loads increased by 210% and total phosphorus by 1,270% when compared with conventional water irrigation. The total nitrogen and total phosphorus concentration in the ponded water increased by 254 and 534%, respectively, when compared with conventional water irrigation. The effect of reducing N and P fertilizer application rates by 10, 30, and 50% on nutrient loads exiting a paddy field were also simulated using the validated CREAMS-PADDY model. These simulations indicated that total phosphorus loads from the paddy were reduced only slightly by reducing the fertilizer, while total nitrogen loads were reduced by as much as 8.8, 16.6, and 24.4% when N ferlitizer rates were reduced by 10, 30, and 50%, respectively. An erratum to this article can be found at  相似文献   
7.
8.
A field-based system used to quantify the response of acid grassland to reduced atmospheric nitrogen and sulphur deposition, and to investigate the effects of elevated soil temperature on acid grassland development is described. The system is based on 12 retractable roofs, covering undisturbed experimental plots of acid grassland and three controls. Nine roofs are used to exclude natural precipitation and three roofs used to retain emitted IR radiation at night. An irrigation system has been developed to simulate natural precipitation, allowing for the application of specific treatment regimes of ambient, reduced nitrogen and reduced nitrogen/sulphur deposition beneath the nine rain exclusion plots. Plant, soil parameters, leachate chemistry and gaseous fluxes are being monitored and initial results on soil water chemistry are described. Warming appeared to enhance nitrate concentrations in soil water but this was not sustained beyond the first year of treatment. In contrast, the deposition reduction treatments decreased soil water nitrate concentrations within a few weeks of reducing deposition. This was not observed for other solutes such as sulphate or ammonium suggesting a more direct link between deposition of nitrate and leaching losses.  相似文献   
9.
Lysimeters located outdoors have been used to evaluate the decomposition of buried oily beach sand waste (OBS) prepared using Forties light crude oil and sand from different locations around the British coast. The OBS (5% oil by weight) was buried as a 12-cm layer over dune pasture sub-sand and overlain by 20 cm of dune pasture topsoil. Decomposition rates of oil residues averaged 2300 kg ha(-1) in the first year and the pattern of oil decomposition may be represented by a power curve. Oil decomposition was strongly related to the temperature in the OBS layer, but was also significantly affected by rainfall in the previous 12 h. The CO(2) flux at the surface of the treatment lysimeters followed the relationship [log(10) CO(2) (mg C m(-2) h(-1))=0.93+0.058x OBS temp. (degrees C)-0.042x12 h rain (mm)]. There was considerable variation in the rate of oil decomposition in sands collected from different sites. Sand from Askernish supported most microbial activity whilst sand from Tain was relatively inactive. The decomposition process appeared to cease when the sand became saturated with water, i.e. temporarily anaerobic. However, decomposition recommenced when the soil dried out. The fastest rate of decomposition occurred in sand from one of the two sites predicted to have high populations of hydrocarbon-degrading bacteria. Larger particle size and higher Ca content may also be significant factors governing the rate of decomposition.  相似文献   
10.
Cast iron has been used as a reactive material in permeable reactive barriers (PRBs) for site remediation. While reactions are generally believed to occur on the iron (oxide) surface, a recent study by [Oh, S.Y., Cha, D.K., Chiu, P.C., 2002a. Graphite-mediated reduction of 2,4-dinitrotoluene with elemental iron. Environ. Sci. Technol. 36 (10), 2178-2184] showed that graphite inclusions in cast iron can also serve as reaction sites for 2,4-dinitrotoluene (DNT). These authors also found that graphite-mediated reduction of DNT has a regioselectivity that is different from that for iron surface. In this study, we quantified the observations reported by Oh et al. and examined the role of graphite in cast iron through numerical modelling. Models containing one and two reaction sites were developed to evaluate the mass transfer, sorption and reaction rates for DNT reduction in batch systems containing high-purity and cast iron. Our simulations showed that the regioselectivity, defined as the ratio of the ortho- and para-nitro reduction rate constants, was 0.37+/-0.04 S.E. (S.E.=one estimated standard error) for iron surface and 3.59+/-0.76 S.E. for graphite surface. In the cast iron-water system, we estimated that at least 66+/-2% S.E. of the DNT was reduced on graphite surface, despite the low graphite content and the lower DNT reduction rate with graphite than with iron. Graphite played such an important role because of the rapid adsorption of DNT to graphite. In the batch experiments conducted by Oh et al., external mass transfer was not rate limiting. Surface reaction was the rate-limiting step for DNT reduction on the graphite surface in cast iron, whereas internal mass transfer and/or adsorption and surface reaction were important for high-purity iron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号