首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
Insect-growth regulators (IGRs) have been receiving foremost attention as potential means of selective insect control. Benzoyl phenyl urea (BPU) is a well-known IGR having chitin synthesis inhibitor activity. Mimics of BPU have been synthesized by suitable derivatization of a naturally occurring monoterpenoid, thymol (2-isopropyl-5-methyl phenol) to form a = series of substituted benzoyl thymyl thioureas (BTTUs) [IVa-f] and benzoyl thymyl ureas (BTUs) [Va-f]. The synthesized compounds have been characterized by 1H and 13C NMR, LC-MS and elemental analysis. These derivatives have been screened for their effect on total haemocyte count of Dysdercus koenigii. It has been observed that the introduction of substituted benzoyl thiourea and urea linkage into a thymol ring via an amino group results in higher activity than the parent compound thymol and a comparable pattern of results with the standard insect-growth regulators, Penfluron. Urea [Va-f] compounds exhibited greater effect on Total Haemocyte Count (THC) than thiourea [IVa-f]. Fluoro substitution enhanced the effect on THC more than chloro substituted compounds, while ortho-substitution resulted in a better effect than para-substitution. The results described in this paper are promising and provide new array of synthetic chemicals that may be utilized as insect growth regulators.  相似文献   
2.
3.
Insect-growth regulators (IGRs) have been receiving foremost attention as potential means of selective insect control. Benzoyl phenyl urea (BPU) is a well-known IGR having chitin synthesis inhibitor activity. Mimics of BPU have been synthesized by suitable derivatization of a naturally occurring monoterpenoid, thymol (2-isopropyl-5-methyl phenol) to form a = series of substituted benzoyl thymyl thioureas (BTTUs) [IVa-f] and benzoyl thymyl ureas (BTUs) [Va-f]. The synthesized compounds have been characterized by (1)H and (13)C NMR, LC-MS and elemental analysis. These derivatives have been screened for their effect on total haemocyte count of Dysdercus koenigii. It has been observed that the introduction of substituted benzoyl thiourea and urea linkage into a thymol ring via an amino group results in higher activity than the parent compound thymol and a comparable pattern of results with the standard insect-growth regulators, Penfluron. Urea [Va-f] compounds exhibited greater effect on Total Haemocyte Count (THC) than thiourea [IVa-f]. Fluoro substitution enhanced the effect on THC more than chloro substituted compounds, while ortho-substitution resulted in a better effect than para-substitution. The results described in this paper are promising and provide new array of synthetic chemicals that may be utilized as insect growth regulators.  相似文献   
4.
Various marine habitats sustain variety of bio-sources of ecological and biotech potentials. Pharmaceutical potential compound Cyclosporine A was reported from marine fungus Microdochium nivale associated with Porteresia coarctata, a marine salt marsh grass from mangrove environment distributed along the Central West Coast (CWC) of India. This study involves association of M. nivale with P. coarctata plant, fermentation conditions, purification of Cyclosporine A, chemical characterization etc. Its antifungal inhibition and MIC (Minimum inhibitory concentration) against Aspergillus strains (A. niger, A. japonicus, A. fresenii), yeasts and dermatophytes (Candida sp., Cryptococcus neoformans, Trichophyton mentagrophytes, T. tonsurans, T. violaceum, Microsporium gypsum and Fusarium sp.) were evaluated. However, the MIC against A. japonicus, C. neoformans, Candida sp. and T. tonsurans were confirmed to be as low as 12.5-25 mg disc(-1). The antifungal properties of Cyclosporine A against Aspergillus species, yeast and dermatophytes revealed that CyclosporineAwould be a potential compound for life threatening diseases caused by above fungi in both human and animals. Furthermore, we have reported herewith another source of Cyclosporin Aderived from filamentous fungus, M. nivale. occurring in marine environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号