首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
环保管理   1篇
综合类   1篇
基础理论   2篇
污染及防治   10篇
  2021年   1篇
  2020年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1980年   1篇
排序方式: 共有14条查询结果,搜索用时 171 毫秒
1.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
2.
The Copper Cliff Tailings Disposal Area, located near Sudbury, Ontario, covers an area of approximately 2200 ha and constitutes more than 10% of the total area of all mine tailings in Canada. The area has been utilized since 1936, receiving sulphide-containing tailings from the Inco Sudbury operations. Field measurements of pore-gas oxygen and carbon dioxide in the vadose zone indicate that sulphide oxidation has progressed to depths of 1.6 m to 1.7 m within the tailings. The oxidation of sulphide minerals within the vadose zone, and the accompanying dissolution of carbonate and aluminosilicate minerals within these tailings releases SO4, Fe(II) and other metals to the pore water. In the vadose and saturated zones, concentrations of Fe and Ni exceed 10100 mg/l and 2210 mg/l, respectively. These high concentrations of dissolved metals are attenuated by a series of precipitation, coprecipitation and adsorption reactions. The precipitation of secondary sulphate and hydroxide phases also create hardpan layers at or near the oxidation front. Geochemical modelling of the pore-water chemistry suggests that pH-buffering reactions are occurring within the shallow oxidized zones, and that secondary-phase precipitation is occurring at or near the underlying hardpan and transition zones. Mineralogical study of the tailings confirmed the presence of jarosite, gypsum and goethite within the shallow tailings, suggesting that these phases are controlling the dissolved concentrations of Fe, SO4 and Ca. Extraction experiments conducted on the tailings solids indicate that the constituents contained in the water-soluble fraction of the shallow, weathered tailings are derived from the original pore water and the dissolution of highly soluble phases such as gypsum. The acid-leachable fraction of the weathered tailings accounts for up to 25% of the heavy metals, and the reducible fraction may contain up to 100% of the heavy metals within the shallow, weathered tailings. Based on the pore water profiles and the geochemistry of the tailings solids, a relative mobility scale of Fe=Mn=Ni=Co>Cd Zn>Cr=Pb>Cu can be determined.  相似文献   
3.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   
4.
5.
High resolution direct-push profiling over short vertical distances was used to investigate CH(4) attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH(4) and CO(2), and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in δ(13)C(CH4) from an average of -57.6‰ (±1.7‰) in the methanogenic zone to -39.6‰ (±8.7‰) at 105m downgradient, strongly suggest CH(4) attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5m below the water table suggesting that transport of O(2) across the water table is leading to aerobic degradation of CH(4) at this interface. Dissolved N(2) concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O(2) through aerobic degradation of CH(4) or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O(2) rich recharge water were important O(2) transport mechanisms.  相似文献   
6.
A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5vol.%. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO(4) and S(2)O(3) was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S(2)O(3) were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S(2)O(3) removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.  相似文献   
7.
Oxidation reactions have depleted sulfide minerals in the shallow tailings and have generated sulfate- and metal-rich pore water throughout the East Tailings Management Area (ETMA) at Lynn Lake, Manitoba, Canada. Information concerning the tailings geochemistry and mineralogy suggest the sulfide oxidation processes have reached an advanced stage in the area proximal to the point of tailings discharge. In contrast, the distal tailings, or slimes area, have a higher moisture content close to the impoundment surface, thereby impeding the ingress of oxygen and limiting sulfide oxidation. Numerical modelling of sulfide oxidation indicates the maximum rate of release for sulfate, Fe, and Ni occurred shortly after tailings deposition ceased. Although the sulfide minerals have been depleted in the very shallow tailings, the modelling suggests that sulfide oxidation will continue for hundreds and possibly thousands of years. The combination of sulfide minerals, principally pyrrhotite, that is susceptible to weathering processes and the relatively dry, coarse-grained nature of the tailings have resulted in the formation of a massive-hardpan layer in the proximal area of the ETMA. Because extensive accumulations of secondary oxyhydroxides of ferric iron are already present, remediation strategies for the ETMA should focus on mitigating the release of sulfide oxidation products rather than on preventing further oxidation.  相似文献   
8.
The Kidd Creek Cu–Zn sulfide mine is located near Timmins, Ontario. Mill tailings are thickened and deposited as a slurry in a circular impoundment with an area of approximately 1200 ha. Deposition of tailings as a thickened slurry from a central discharge ramp results in a conical-shaped tailings deposit with low perimeter dykes, a uniform grain-size distribution, uniform and low hydraulic conductivity, and a tension-saturated zone above the water table up to 5 to 6 m thick. These characteristics provide benefits over conventionally disposed tailings with respect to tailings management. The thick tension-saturated zone within the tailings limits the thickness of unsaturated tailings that are susceptible to rapid sulfide oxidation. The conical shape of the deposit results in the formation of a recharge area near the centre of the impoundment and discharge in the peripheral areas. In contrast, the elevated nature of many conventional, unthickened tailings impoundments results in recharge over most of the surface of the impoundment, with discharge occurring outside the impoundment through large containment dykes. Three-dimensional pore water flow modelling suggests that approximately 90% of the total discharge from the thickened tailings occurs within the tailings impoundment. When discharge is confined within the impoundment, there is improved control over low-quality effluent, and an opportunity to design passive control measures to reduce treatment costs and minimize environmental impacts.  相似文献   
9.
Book reviews     
  相似文献   
10.
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号