首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   2篇
基础理论   1篇
污染及防治   2篇
  2003年   1篇
  2000年   1篇
  1990年   1篇
  1989年   1篇
  1980年   1篇
  1962年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future papers. The current paper gives an overview of the context, rationale, logistical considerations, and implementation of these surveys, with special emphasis on the field activities of watershed mapping and soil sampling. This discussion should be useful to those planning, implementing, and managing survey activities in support of regional assessments of other environmental concerns, who are likely to face similar choices and constraints.  相似文献   
4.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   
5.
6.
大量的证据表明地衣可以诱发和加速矿质基质的物理、化学风化过程,着生于建筑物表面的地衣能对建筑材料导致明显的生物破坏.其中,地衣菌丝在矿质基质中的穿插生长、原植体随环境变化表现出的膨胀收缩、冻融交替等机制对建筑物造成机械破坏.而地衣分泌的草酸等简单有机酸以及大量的高分子有机化合物诱发和促进矿质基质的生物-化学风化过程.受其影响,矿质建材中原生矿物遭受溶解、蚀变,并产生多种次生矿物.最终破坏建筑物的坚固程度、缩短其使用寿命、减低其美学价值.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号