首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
废物处理   1篇
环保管理   5篇
基础理论   9篇
污染及防治   3篇
社会与环境   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1995年   1篇
  1982年   2篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Boggs, Kevin G., Robert W. Van Kirk, Gary S. Johnson, Jerry P. Fairley, and P. Steve Porter, 2010. Analytical Solutions to the Linearized Boussinesq Equation for Assessing the Effects of Recharge on Aquifer Discharge. Journal of the American Water Resources Association (JAWRA) 46(6):1116–1132. DOI: 10.1111/j.1752-1688.2010.00479.x Abstract: There is a need to develop a general understanding of how variations in aquifer recharge are reflected in discharge. Analytical solutions to the linearized Boussinesq equation governing flow in an unconfined aquifer provide a unified mathematical framework to quantify relationships among lag time, attenuation and distance between aquifer recharge and discharge and the effect of an up-gradient no-flow boundary. We applied this framework to three types of recharge: (1) instantaneous, (2) periodic, and (3) constant rate for a finite duration. When the temporal scale of recharge exceeds the diffusive aquifer time scale, recharge will be reflected in discharge quickly and with little attenuation. When aquifer time scale is large, most recharge events are shorter in scale than that of the aquifer, resulting in large attenuation. Attenuation is more sensitive to boundary effects than lag time, and boundary effects increase as recharge time scale increases. Boundary effects can often be ignored when the recharge source is farther than 1/3 of the domain length away from the no-flow boundary. We illustrate analytical results with application to the economically critical Eastern Snake River Plain Aquifer in Idaho. In this aquifer, detectable annual and decadal cycles in discharge can result from recharge no farther than 20 and 60 km away from the discharge point, respectively. The effects of more distant, long-term recharge can be detected only after a time lag of several decades.  相似文献   
2.
3.
4.
Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response.  相似文献   
5.
Vertical and horizontal distributions of 3 larval stages of the oyster Crassostrea virginica were measured concurrently with phytoplankton species compositions, phytoplankton size distributions and physical hydrographic parameters in tributaries of the Chesapeake Bay (USA) during the oyster spawning seasons of 1980 and 1981. The superposition of the biological distributions upon the physical hydrographic data provide instantaneous distributions of the entire system which are consistent with the upstream transport of oyster larvae. Oyster larvae distributions in the Choptank River and its Broad Creek and Tred Avon River tributaries can be described in terms of three contiguous regions: (1) a common spawning region, (2) an intermediate, upstream transport region and (3) a seed bed region where major spat set occurs. The phytoplankton species compositions and abundances in the size fraction less than 10 m in the tributary system during the transport were sufficient to supply optimum growth requirements of developing larvae. The transport proposed can explain the 30 yr record of consistently higher spat set success in one tributary, Broad Creek, relative to an adjoining tributary, the Tred Avon River. This may be a general mechanism whereby oysters maintain reproductive success and emigrate to seed bed regions in the Chesapeake Bay.Contribution No. 1144 of the McCollum-Pratt Institute and Department of Biology  相似文献   
6.
We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling.  相似文献   
7.
8.
Both means and year-to-year variances of climate variables such as temperature and precipitation are predicted to change. However, the potential impact of changing climatic variability on the fate of populations has been largely unexamined. We analyzed multiyear demographic data for 36 plant and animal species with a broad range of life histories and types of environment to ask how sensitive their long-term stochastic population growth rates are likely to be to changes in the means and standard deviations of vital rates (survival, reproduction, growth) in response to changing climate. We quantified responsiveness using elasticities of the long-term population growth rate predicted by stochastic projection matrix models. Short-lived species (insects and annual plants and algae) are predicted to be more strongly (and negatively) affected by increasing vital rate variability relative to longer-lived species (perennial plants, birds, ungulates). Taxonomic affiliation has little power to explain sensitivity to increasing variability once longevity has been taken into account. Our results highlight the potential vulnerability of short-lived species to an increasingly variable climate, but also suggest that problems associated with short-lived undesirable species (agricultural pests, disease vectors, invasive weedy plants) may be exacerbated in regions where climate variability decreases.  相似文献   
9.
Abstract: We assessed the degree to which Alaskan lands reflect the state's biodiversity by dividing the entire state into four categories of land protection ranging from highly protected to minimally protected in terms of potential for future development. We then compared the percentage of each ecoregion and plant-cover type in each land protection class. We assumed that 12% protection represents an acceptable minimum and examined the percentage of site records of rare plants in protected and unprotected areas. Of 28 ecoregions in Alaska, 15 (63.4%) have <12% of their area in highly protected areas. Similarly, 11 of 21 vegetation-cover types (43.7%) have <12% protection. For 32 rare vascular plants, an average of 27% of records occur on highly protected lands. Seventy-five percent of the rare plants had <50% of their records from highly protected lands. Less than 1% of Alaska has been permanently altered by human activity. In contrast to the lower 48 states, time remains to plan development that preserves biodiversity while permitting an economically sustainable economy—if the effort is made now.  相似文献   
10.
Boggs, Johnny, Ge Sun, David Jones, and Steven G. McNulty, 2012. Effect of Soils on Water Quantity and Quality in Piedmont Forested Headwater Watersheds of North Carolina. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/jawr.12001 Abstract: Water quantity and quality data were compared from six headwater watersheds on two distinct soil formations, Carolina Slate Belt (CSB) and Triassic Basins (TB). CSB soils are generally thicker, less erodible, and contain less clay content than soils found in TB. TB generated significantly more discharge/precipitation ratio than CSB (0.33 vs. 0.24) in the 2009 dormant season. In the 2009 growing season, TB generated significantly less discharge/precipitation ratio than CSB (0.02 vs. 0.07). Over the entire monitoring period, differences in discharge/precipitation ratios between CSB and TB were not significantly different (0.17 vs. 0.20, respectively). Storm‐flow rates were significantly higher in TB than CSB in both dormant and growing season. Benthic macroinvertebrate biotic index scores were excellent for all streams. Nutrient concentrations and exports in CSB and TB were within background levels for forests. Low‐stream nitrate and ammonium concentrations and exports suggested that both CSB and TB were nitrogen limited. Soils appear to have had a significant influence on seasonal and storm‐flow generation, but not on long‐term total water yield and water quality under forested conditions. This study indicated that watersheds on TB soils might be more prone to storm‐flow generation than on CSB soils when converted from forest to urban. Future urban growth in the area should consider differences in baseline hydrology and effects of landuse change on water quantity and quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号