首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
综合类   2篇
污染及防治   3篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2006年   1篇
  2004年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 335 毫秒
1
1.
2.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
3.
4.
Comparison of aerobic and anaerobic biotreatment of municipal solid waste   总被引:4,自引:0,他引:4  
To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
5.
6.
Endocrine disrupting compounds (EDCs) are contaminants that may be hormonally active at low concentrations and are emerging as a major concern for water quality. Estrogenic EDCs (e-EDCs) are a subclass of EDCs that, when organisms are exposed to them, function as estrogens. Given that there are numerous e-EDCs that can negatively affect humans and wildlife, general screening techniques like biologically based assays (BBAs) may provide major advantages by estimating the total estrogenic effects of many e-EDCs in the environment. These techniques may potentially be adapted for field portable biologically directed sampling and analyses. This article summarizes available BBAs used to measure estrogenic e-EDCs in the environmental samples and also presents results relating to fate and transport of e-EDCs. Estrogenic EDCs appear to be almost ubiquitous in the environment, despite low solubility and high affinity of organic matter. Potential transport mechanisms may include: (1) transport of more soluble precursors, (2) colloid facilitated transport, (3) enhanced solubility through elevated pH, and (4) the formation of micelles by longer-chain ethoxylates. Due to their persistent and ubiquitous nature, source control strategies for e-EDCs may reduce influent concentration to wastewater treatment plants so that the post treatment effluent will decrease concentrations to estrogenically inactive levels. Alternatively if source reduction is not possible, then more testing is needed on tertiary treatment technologies and treatment efficiencies for e-EDCs. There is still a need for research on remediation and restoration approaches for habitats disturbed by elevated e-EDC concentrations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号