首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   2篇
综合类   1篇
污染及防治   3篇
  2008年   1篇
  2006年   1篇
  2005年   4篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Acute zinc toxicity was assessed for 10 freshwater cladoceran species collected in six different ecosystems across Europe and for two standard laboratory-reared species (Daphnia magna and Ceriodaphnia dubia). The collected organisms belonged to five different genera: Daphnia (subgenus Daphnia and Ctenodaphnia), Ceriodaphnia, Simocephalus, Acroperus and Chydorus. The 48-h EC50 of the field-collected organisms tested in standard laboratory water ranged from 375+/-141 to 4314+/-1513 microg Znl(-1). The laboratory clone of D. magna was less sensitive than the majority of the field-collected species, while our laboratory Ceriodaphnia dubia was the second most sensitive. Considerable inter-species variation was found within the genus of Ceriodaphnia (factor 6) and within the genus Daphnia (factor 8). Among the different (sub)genera tested, Chydorus and Ctenodaphnia were significantly more tolerant than the others (up to a factor 3 difference). A significant positive relationship (r2=0.67, p<0.05) between the mean cladoceran 48-h EC50 and the ambient zinc concentration of the different aquatic systems was demonstrated, suggesting a role of acclimation and/or adaptation. No significant correlation between the acute zinc tolerance and the length of the organisms was found.  相似文献   
2.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   
3.
4.
The acute copper sensitivity of 44 European freshwater cladocerans, from four families (Daphniidae, Bosminidae, Macrothricidae, Chydoridae) and 13 genera (Daphnia, Ctenodaphnia, Ceriodaphnia, Simocephalus, Scapholeberis, Bosmina, Acantholeberis, Alona, Acroperus, Chydorus, Eurycercus, Disparalona and Pleuroxus) were assayed. The 48-h EC(50)s of field-collected organisms tested in reconstituted standard laboratory water ranged from 5.3 to 70.6 mug Cu L(-1). Only among Ctenodaphnia were significant intra-species differences observed. Significant inter-species differences were noted among Alonina and Daphnia. Between all genera tested, a maximum of a 12-fold difference in copper sensitivity was noted. Most animals were more sensitive than a laboratory D. magna clone. A weak non-significant increasing trend was noted between mean cladoceran 48-h EC(50) and ambient copper concentration of the different aquatic systems, suggesting acclimation/adaptation in the field. A positive relationship was also observed between the 48-h EC(50) of the field-collected cladoceran species (without the Chydoridae family) and the size of the organisms.  相似文献   
5.
The objective of this study was to evaluate vegetation recovery on footpaths in woodland that have been closed for access for 6 years. A vegetation survey was conducted in four mesophile forests, in transects perpendicular to the trail. Analyses concentrated on the direction and rate of the recovery process. Vegetation on trail sides in these ecosystems recovered substantially. Non-metric multidimensional scaling based upon species composition separated the four sample locations and each cluster contained representatives of the three major trail zones: path centre, transition and undisturbed zones. Analysis of distribution of life forms, plant strategies and seedbank longevity indices showed no differences between trail zones. This indicates that vegetation on the path centre is likely to recover towards the plant composition of the undisturbed zone. Ellenberg values indicate that environmental variation is not related to former path structures, as significant variability was only observed between the forest sites. Furthermore, the analysis concentrated on characteristics of species relevant to the recovery process.  相似文献   
6.
The success of calcareous grassland recreation following abandonment depends to a large extent on the composition of the soil seed bank. We studied the species richness and composition of the seed bank along a chronosequence from well-developed calcareous grassland to scrub and forest vegetation, which had developed on calcareous grassland over the last 225 years. The seed bank density was highest in the calcareous grassland soils (930 seeds/m(2)). However, the seed bank was mainly composed of rather common species of nutrient poor grassland, which were poorly represented in the surface vegetation. There were no significant differences in soil seed bank density and species composition between the calcareous grassland and scrub vegetation that was less than 15 years old, largely because several grassland species had persisted in the scrub vegetation and were therefore able to replenish the soil seed bank. In contrast seed density and species richness declined significantly after 40 years of grassland abandonment. Indeed, forest soils had the lowest seed densities (214 seeds/m(2)) with only a few grassland species represented. This reflects the lack of grassland species in the field layer of the forest, and, therefore, the lack of seed production and seed bank replenishment. It is clear that recreation of calcareous grassland on long abandoned sites cannot rely on germination of target species from the seed bank alone. Even in the calcareous grassland soil, seeds of target species are not abundant as the majority produces transient seeds, which decay rapidly if they do not germinate immediately. Successful grassland recreation on such sites therefore may require seeds of target species to be introduced artificially (e.g. as seed mixtures, green hay, etc.). Alternatively, reinstatement of traditional practices, such as grazing or mowing, will increase the natural dispersal potential of these species, allowing population reestablishment in the long term.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号