首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
废物处理   1篇
基础理论   1篇
污染及防治   1篇
  2021年   1篇
  2019年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 54 毫秒
1
1.

It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg−1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg−1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg−1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent.

Graphical abstract

  相似文献   
2.
This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N2O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO2, CH4 and N2O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N2O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N2O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N2O releases: 8.1 ± 0.16 mg m?2 d?1 (n = 384), 4.2 ± 0.14 mg m?2 d?1 (n = 132) and 1.9 ± 0.10 mg m?2 d?1 (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N2O gaseous surface releases and recirculation events were evidenced. Estimated N2O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.  相似文献   
3.
Two-year old Ulmus laevis Pall (U. laevis) seedlings were cultivated in a three-month hydroponic experiment with inorganic (aresenite – As(III) and arsenate – As(V)) and organic (dimethylarsenic acid – DMA(V)) arsenic forms, at 0.06 and/or 0.6?mM concentrations. Further, the profile and content of total low molecular weight organic acids (LMWOAs) were investigated in the rhizosphere, roots and leaves of U. laevis. Obtained results showed that the addition of As(III) or As(V) individually or in a mixture led to increased LMWOAs concentration in the rhizosphere, especially of oxalic and malonic acids, in comparison to the control, while in roots the overall content of the profiled LMWOAs decreased. In both rhizosphere and roots, addition of the DMA(V) form resulted in the inhibition of LMWOAs exudation into the rhizosphere and their creation in plant roots. Leaves were characterised by a higher content of LMWOAs than in the rhizosphere and roots for all experimental systems, where the profile and content of LMWOAs was strictly correlated with the analysed As forms. Our study indicated that creation of LMWOAs in U. laevis organs and their exudation to the rhizosphere could be responsible for the As toxicity tolerance of the plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号