首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2017年   2篇
  2013年   2篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial boiler applications and in utility and industrial boilers abroad. Their small size and reduced cost relative to more conventional reverse-gas baghouses makes the use of PJFFs appear to be an attractive particulate control option for utility boilers. This paper (Part 2 of a three-part series) summarizes the results of pilot PJFF studies sponsored by the Electric Power Research Institute at different utility sites in the United States. The purpose of these tests is to evaluate PJFF performance for U.S. fossil-fuel-fired applications. These data are also used to corroborate the results of a recent worldwide survey of PJFF user experience, as described in Part 1 of this series. Part 3 will provide a cost comparison of PJFFs to other particulate control options such as electrostatic precipitators and reverse-gas baghouses.  相似文献   
2.
The overall objective of this project was to determine the cost and impacts of Hg control using sorbent injection into a Compact Hybrid Particulate Collector (COHPAC) at Alabama Power's Gaston Unit 3. This test is part of a program funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the costs of controlling Hg from coal-fired utility plants that do not have scrubbers for SO2 control. The economics will be developed based on various levels of Hg control. Gaston Unit 3 was chosen for testing because COHPAC represents a cost-effective retrofit option for utilities with existing electrostatic precipitators (ESPs). COHPAC is an EPRI-patented concept that places a high air-to-cloth ratio baghouse downstream of an existing ESP to improve overall particulate collection efficiency. Activated carbons were injected upstream of COHPAC and downstream of the ESP to obtain performance and operational data. Results were very encouraging, with up to 90% removal of Hg for short operating periods using powdered activated carbon (PAC). During the long-term tests, an average Hg removal efficiency of 78% was measured. The PAC injection rate for the long-term tests was chosen to maintain COHPAC cleaning frequency at less than 1.5 pulses/bag/hr.  相似文献   
3.
Abstract

The overall objective of this project was to determine the cost and impacts of Hg control using sorbent injection into a Compact Hybrid Particulate Collector (COHPAC) at Alabama Power’s Gaston Unit 3. This test is part of a program funded by the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the costs of controlling Hg from coal-fired utility plants that do not have scrubbers for SO2 control. The economics will be developed based on various levels of Hg control.

Gaston Unit 3 was chosen for testing because COHPAC represents a cost-effective retrofit option for utilities with existing electrostatic precipitators (ESPs). COHPAC is an EPRI-patented concept that places a high air-to-cloth ratio baghouse downstream of an existing ESP to improve overall particulate collection efficiency. Activated carbons were injected upstream of COHPAC and downstream of the ESP to obtain performance and operational data.

Results were very encouraging, with up to 90% removal of Hg for short operating periods using powdered activated carbon (PAC). During the long-term tests, an average Hg removal efficiency of 78% was measured. The PAC injection rate for the long-term tests was chosen to maintain COHPAC cleaning frequency at less than 1.5 pulses/bag/hr.  相似文献   
4.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure.  相似文献   
5.
Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号