首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
综合类   2篇
基础理论   1篇
污染及防治   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
在深入研究德兴地区超大型铜、金矿成矿地质背景的基础上 ,从构造地球化学方面着重研究德兴地区超大型铜、金矿床成矿的控制因素 ,并进行构造控矿模拟实验。研究结果表明 ,德兴地区超大型铜、金矿床的形成除因其处于特殊的构造位置 ,具有特殊的地质背景及成矿环境外 ,还与多种地质作用、多种控矿因素耦合作用及地质构造长期发展演化使成矿物质多次叠加富集密切相关  相似文献   
2.
Environmental Science and Pollution Research - Sugarcane monoculture (SM) often leads to soil problems, like soil acidification, degradation, and soil-borne diseases, which ultimately pose a...  相似文献   
3.

In this study, farmland and mining ecotypes of Solanum photeinocarpum (a potential cadmium (Cd) hyperaccumulator plant) were reciprocally hybridized each other, and the Cd accumulation characteristics of the F1 hybrids were studied. In pot experiments, higher biomasses and Cd extraction abilities were found for two S. photeinocarpum F1 hybrids than for the parents, but the Cd contents in various organs were lower in the hybrids than the parents. However, the differences between the Cd contents in the two hybrids were not significant. The antioxidant enzyme (superoxide dismutase and peroxidase) activities were higher for the S. photeinocarpum F1 hybrids than the parents. Less DNA methylation was found in the hybrids than the parents because more demethylation occurred in the hybrids than the parents. The biomass, Cd content, and Cd extraction ability effects in field experiments were similar to the effects in the pot experiments. It was concluded that reciprocally hybridizing different S. photeinocarpum ecotypes improved the ability of S. photeinocarpum to be used to phytoremediate contaminated land.

  相似文献   
4.
以沉淀-回流方法于磷酸银(Ag3PO4)中掺杂氮化碳(g-C3N4)制备新型复合光催化剂,同时采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射图(XRD)等手段对合成催化剂的形态特征、晶型结构以及物理化学性质进行表征.以碘帕醇(IPM)作为目标污染物,通过改变催化剂的使用条件考察了氙灯光照下催化剂对水溶液中含碘类造影剂(ICMs)的光催化降解性能,并且分析了催化氧化过程中可能的污染物降解途径以及转化产物.结果表明,合成后的催化剂结构稳定,相对于使用单一催化剂(Ag3PO4或g-C3N4)条件下,复合催化剂对ICMs的光降解性能都得到大幅度提升,经条件优化后,确定Ag3PO4与g-C3N4的质量比例为0.15∶0.1时降解效果最佳,但不可超过0.2∶0.1,且降解性能与催化剂的投加浓度呈正相关,浓度在0.75 ...  相似文献   
5.
ABSTRACT

To determine whether grafting increases cadmium (Cd) accumulation in the post-grafting generation of hyperaccumulator plants, the effects of grafting on Cd accumulation characteristics of post-grafting generations of a potential Cd-hyperaccumulator Solanum photeinocarpum were evaluated in pot and field experiments. The following four grafting combinations were examined: ungrafted (UG), self-rooted grafting involving one S. photeinocarpum seedling (SG), self-rooted grafting involving two S. photeinocarpum seedling developmental stages (DG), and grafting on wild potato rootstock (PG). Grafting did not induce genetic changes in S. photeinocarpum, and increased the shoot biomass and the amount of Cd extracted by the shoots of the first, second, and third generations of S. photeinocarpum (PG > DG > SG > UG). Additionally, enhanced superoxide dismutase, peroxidase, and catalase activities and increased soluble protein contents of the first post-grafting generation were observed for the DG and PG, whereas only enhanced superoxide dismutase and peroxidase activities were observed for the SG. Grafting increased the DNA methylation levels by inducing hypermethylation in the first post-grafting generation (PG > DG > SG > UG). Therefore, grafting can enhance the Cd accumulation (phytoremediation) ability of post-grafting generations of S. photeinocarpum by enhancing DNA methylation levels, especially when wild potato rootstock is used.  相似文献   
6.

Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号