首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   8篇
  国内免费   19篇
安全科学   31篇
废物处理   41篇
环保管理   34篇
综合类   42篇
基础理论   55篇
污染及防治   162篇
评价与监测   44篇
社会与环境   30篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   18篇
  2017年   16篇
  2016年   25篇
  2015年   10篇
  2014年   20篇
  2013年   33篇
  2012年   31篇
  2011年   29篇
  2010年   19篇
  2009年   26篇
  2008年   30篇
  2007年   37篇
  2006年   30篇
  2005年   21篇
  2004年   12篇
  2003年   10篇
  2002年   21篇
  2001年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
1.
The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer, which was launched on the Earth Observing System (EOS) Terra satellite in 1999. Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The global and regional distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. This work also revealed that the seasonal cycles for CO are at a maximum in the spring and a minimum in the summer, with average concentrations ranging from 118 to 170 ppbv. The monthly average for CO shows a similar profile to that for O3. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O3 in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O3, which tend to give the apparent summer minimums.  相似文献   
2.
There are growing interests to use co-composted drilling wastes contaminated with hydrocarbons as growth media for planting in land reclamation. However, such use of the compost may have potential problems such as inherent toxicity of residual hydrocarbon and microbial N immobilization due to high compost C to N ratios. We investigated the growth, biomass production, N uptake, and foliar delta13C of white spruce (Picea glauca [Moench] Voss) seedlings in a pot experiment using 1-, 2-, 3-, and 4-yr-old composts (with different hydrocarbon concentrations and C to N ratios) and a local noncontaminated soil with (200 kg N ha(-1)) or without N fertilization. Growth and N content of seedlings (particularly N content in roots) were lower when grown in the compost media as compared with those grown in the soil. Within the compost treatments seedling growth was affected by compost age, but the magnitude of growth reduction was not linearly proportional to hydrocarbon concentrations. Plant N uptake increased with compost age, which corresponds with an increase in indigenous mineral N concentration. Effects of N fertilization on N uptake were curtailed by the presence of indigenous mineral N (e.g., in the 4-yr-old compost) and by fertilization-induced stimulation of microbial activities (e.g., in the 1-yr-old compost). The differences in foliar delta13C values between seedlings grown in compost and soil (P < 0.05) suggest that limitations on water uptake caused by the residual hydrocarbon might have been the predominant factor limiting seedling growth in the compost media. This study suggests that water stress caused by residual hydrocarbons may be a critical factor for the successful use of co-composted drilling wastes as a growth medium.  相似文献   
3.
4.
Journal of Material Cycles and Waste Management - The recent emergence of the COVID-19 pandemic has contributed to the drastic production and use of healthcare and personal protective equipment,...  相似文献   
5.
A bias in clear-sky conditions that will be involved in estimating particulate matter(PM)concentration from aerosol optical depth(AOD) was examined using PM_(10) from two Aerosol Robotic Network sites in Korea. The study periods were between 2004 and 2007 at Anmyon and between 2003 and 2011 at Gosan, when both PM_(10) and AOD were available. Mean PM_(10) when AOD was available(PM AOD) was higher than that from all PM_(10)data(PM all) by 5.1 and9.9 μg/m~3 at Anmyon and Gosan, which accounted for 11% and 26% of PM all, respectively.Because of a difference between mean PM_(10) under daytime clear-sky conditions(PM clear)and PM AOD, the variations in ΔPM_(10), the difference of PM all from PM clear rather than from PM AOD, were investigated. Although monthly variations in ΔPM_(10)at the two sites were different, they were positively correlated to those in ΔT, similarly defined as ΔPM_(10)except for temperature, at both sites. ΔPM_(10)at Anmyon decreased to a negative value in January due to an influence of the Siberian continental high-pressure system while ΔPM_(10)at Gosan was high in winter due to an effect of photochemical production at higher temperatures than at Anmyon.  相似文献   
6.
Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/γ-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between kf (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas.  相似文献   
7.
Real-time monitoring and control of temperature in ultrasonic joining of battery tabs and coupons are important for the quality improvement and cost reduction of battery assembly. However, there have always been difficulties in accurate and real-time measurement of temperature by conventional sensors for practical implementation. In this study, an innovative method is developed to provide an enabling technology for the in situ transient temperature monitoring, which could provide reliable feedback signals for potential control of ultrasonic joining processes. Micro thin film thermocouples (TFTCs) were fabricated on thin silicon substrates, which were then inserted in the welding anvil as a permanent feature so that the sensors were always located about 100 μm directly under the welding spot during joining of multilayer Ni-coated Cu thin sheets for battery assembly. Good repeatability was demonstrated while a temperature rise of up to 650 °C was obtained due to the closeness of the sensors to the welding spot. The inserts with thin film sensors remained functional after welding experiments. This method has a great potential for in situ transient temperature monitoring, and thus the control of ultrasonic joining processes to realize a practical smart joining system.  相似文献   
8.
The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5+/-0.3) and strawberry (2+/-1), higher in vegetables (5+/-3), seeds (15+/-7) and reached a maximum in straw (187+/-90). The average CR values of 36Cl were estimated for the most important crops using all experimental data on 36Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36Cl specific content in the water and moisture in the cooked potato. The 36Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36Cl PF for cereal flour can be estimated as 1. The 36Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36Cl specific activity in soil of 1 Bq kg-1, the estimated annual dietary 36Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children.  相似文献   
9.
As a remedial option, the natural attenuation capacity of a petroleum contaminated groundwater at a military facility was examined. Hydrogeological conditions, such as high water level, permeable uppermost layer and frequent heavy rainfall, were favorable to natural attenuation at this site. The changes in the concentrations of electron acceptors and donors, as well as the relevant hydrochemical conditions, indicated the occurrence of aerobic respiration, denitrification, iron reduction, manganese reduction and sulfate reduction. The calculated BTEX expressed biodegradation capacity ranged between 20.52 and 33.67 mg/L, which appeared effective for the reduction of the contaminants levels. The contribution of each electron accepting process to the total biodegradation was in the order: denitrification > iron reduction > sulfate reduction > aerobic respiration > manganese reduction. The BTEX and benzene point attenuation rates were 0.0058-0.0064 and 0.0005-0.0032 day-1, respectively, and the remediation time was 0.7-1.2 and 2.5-30 years, respectively. The BTEX and benzene bulk attenuation rates were 8.69 × 10-4 and 1.05 × 10-3 day-1, respectively, and the remediation times for BTEX and benzene were 7.2 and 17.5 years, respectively. However, most of the natural attenuation occurring in this site can be attributed to dilution and dispersion. Consequently, the biodegradation and natural attenuation capacities were good enough to lower the contaminants levels, but their rates appeared to be insufficient to reach the remediation goal within a reasonable time frame. Therefore, some active remedial measures would be required.  相似文献   
10.
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH4+-N concentration decreased because of ammonification which was then followed by nitrification. The NO4+-N and NO4+-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号