首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   2篇
基础理论   2篇
污染及防治   3篇
评价与监测   2篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 156 毫秒
1
1.
The dynamics of heavy metals in plant-soil interactions   总被引:1,自引:0,他引:1  
The effects of soil contamination by heavy metals are studied by a mathematical interaction model, validated by experimental results. The model relates the dynamics of uptake of heavy metals from soil to plants. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality. Data are taken from soil with Cd, Cu and Zn treatments for alfalfa, lettuce, radish and Thlaspi caerulescens, measuring the concentrations in the aboveground biomass of plants. At low concentrations, the effects of heavy metals are moderate, and the dynamics seem to be linear. However, increasing concentrations exhibit nonlinear behaviors.  相似文献   
2.
A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors.  相似文献   
3.
In the 1960s at Porri?o, Spain, soil from a pesticide factory dump was placed in an uncontrolled land infill during demolition. Since then, organochlorine pesticides have degraded and migrated from their original location. Concentrations of lindane, DDT, dicofol, and related side products or degradation products were determined at depths of 0 to 20, 20 to 60 and 60 to 100 cm along a 300-m transect running between the land infill and a nearby river. Depthwise nonmonotonicities (lowest concentrations of DDT and dicofol were found in the 20- to 60-cm layer) were attributed to the occurrence of several successive spill episodes; in general, concentrations were highest or near-highest in the 0- to 20-cm layer. At the dump site, the analyte contents of the 0- to 20-cm layer were as follows: alpha-hexachlorocyclohexane (alpha-HCH), 25 mg kg-1; beta-HCH, 15 mg kg-1; gamma-HCH (lindane), 1.3 mg kg-1; delta-HCH, 0.5 mg kg-1; DDT, 2.5 mg kg-1; dicofol, 0.05 mg kg-1; DDD+DDE, 2.2 mg kg-1. The alpha-HCH/gamma-HCH ratio was higher than in commercial products, and the DDT/(DDD + DDE) ratio lower, suggesting the degradation of lindane and DDT with time. In general, the concentrations of HCH isomers, DDT, and dicofol fell with increasing distance from the dump site; in particular, the rapid fall in HCH concentrations illustrates the marked immobility of these species in the soil. By contrast, the combined concentration of the DDT degradation products DDD and DDE rose with distance from the dump site, which is attributed to their higher mobility.  相似文献   
4.
At four estuarine sites on the coast of Galicia (northwestern Spain), all of which were affected by the Prestige oil spill, soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents, and other chemical and physical characteristics were measured. Oil pollution altered both chemical and physical soil properties, aggregating soil particles in plaques, lowering porosity, and increasing resistance to penetration and hydrophobicity. The chromium, nickel, copper, iron, lead, and vanadium contents of polluted soils were between 2 and 2500 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the cases of Cr, Cu, Ni, Pb, and V, their origin in the polluting oil was corroborated by the high correlation (r >/= 0.74) between the concentrations of these metals and the total petroleum hydrocarbon (TPH) content of the polluted soils. Soil redox potentials ranged from -19 to -114 mV in polluted soils and 112 to 164 mV in unpolluted soils, and were negatively correlated with TPH content (p < 0.01). The low values in the polluted soils explain why the soluble fractions of their total heavy metal contents were very small (generally less than 3%, and in many cases undetectable).  相似文献   
5.
A large number of studies on the reclamation of mine soils focused on the problem caused by metals and did not explore in depth the issue of nutrients and vegetation after the application of organic materials. The aim of this study was to compare the effect of two treatments made of wastes and vegetated with Brassica juncea L. on the fertility of a settling pond mine soil. The first treatment was compost, biochar, and B. juncea (SCBP) and the second treatment was technosol, biochar, and B. juncea (STBP). This study evaluated the effect of the treatments on the soil nutrient concentrations and fertility conditions in the soil amendment mixtures, after 11 months of greenhouse experiment. Total carbon and nitrogen concentrations were higher in treatment SCBP than in treatment STBP after 7 months but, after 11 months, carbon concentration was higher in STBP. The used technosol could have forms of carbon more stable than compost, which could be released slower than in the compost-amended soils. Both compost and technosol mixed with biochar also increased the concentration of calcium, potassium, magnesium, and sodium in exchangeable form in the mine soil.  相似文献   
6.
In this work we modified a theoretical model of acid deposition in the soil–vegetation interaction to be experimentally applicable. We simplified the expression of the mathematical model of dynamical complex systems by setting parameters into more simple groups, giving an easy-of-validate expression. By the theoretical model it was proposed the nonlinear response of vegetation to acid deposition, which can explain the occurrence of serious and unexpected damages to plantations and forests focused on the catastrophic nature of the effects of aluminum mobility on the vegetation.  相似文献   
7.
The soils at a depleted copper mine in Touro (Galicia, Spain) are chemically degraded. In order to determine the effect of amendments and vegetation on the chemical characteristics of a mine soil and on the plant uptake of metals, a greenhouse experiment was carried out for 3 months. A settling pond soil was amended with different percentages of a compost and biochar mixture and vegetated with Brassica juncea L. The results showed that the untreated settling pond soil was polluted by Cu. Amendments and planting mustards decreased the pseudototal concentration of this metal, reduced the extreme soil acidity and increased the soil concentrations of C and TN. Both treatments also decreased the CaCl2-extractable Co, Cu and Ni concentrations. However, the amendments increased the pseudototal concentration of Zn in the soil, provided by the compost that was used. The results also showed that mustards extracted Ni efficiently from soils, suggesting that B. juncea L. is a good phytoextractor of Ni in mine soils.  相似文献   
8.

Purpose  

The aim of the present study is to propose a nonlinear model which provides an indicator for the maximum phytoextraction of metals to help in the decision-making process. Research into different species and strategies plays an important role in the application of phytoextraction techniques to the remediation of contaminated soil. Also, the convenience of species according to their biomass and pollutant accumulation capacities has gained important space in discussions regarding remediation strategies, whether to choose species with low accumulation capacities and high biomass or high accumulation capacities with low biomass.  相似文献   
9.
On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号