首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
环保管理   4篇
综合类   1篇
基础理论   2篇
污染及防治   3篇
评价与监测   2篇
社会与环境   5篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  1988年   1篇
  1985年   1篇
  1972年   1篇
排序方式: 共有17条查询结果,搜索用时 27 毫秒
1.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
2.
Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.  相似文献   
3.
4.
Atmospheric ammonia (NH(3)) is a concern because of its environmental impact. The greatest contribution to atmospheric NH(3) comes from agricultural sources. This study quantified NH(3) volatilization from cattle defecation and urination on pasture under field conditions in Auburn, Alabama. Treatments consisted of beef feces, dairy feces, dairy urine, and a control. The experiment was conducted during four seasons from June 2003 to April 2004. Fresh feces or urine was applied onto grass swards, and NH(3) volatilization was measured up to 14 d after application using an inverted chamber method. Dairy urine was the only significant source of NH(3). Ammonia nitrogen (N) loss differed among seasons, ranging from 1.8% in winter to 20.9% during the warmer summer months. Cumulative volatilization was best described in this experiment by the equation % NH(3)-N loss = N(max) (1 - e(-ct))(i). The highest rate of NH(3) volatilization generally occurred within 24 h. This study suggests that NH(3) volatilization from cattle urine on pasture is significant and varies with season, whereas NH(3) volatilization from cattle feces is negligible.  相似文献   
5.
ABSTRACT

The imminent development of a number of offshore wind farms in the Republic of Ireland presents a sizable opportunity to stimulate the Irish economy through the growth of an indigenous and globally competitive offshore wind supply chain. This study uses a value chain analysis to evaluate the economic and employment potential of the offshore wind sector for Ireland. The analysis is based on the expenditure on products and services required to develop an offshore wind farm, the planned capacity of projects in the pipeline, and the ability of Irish companies to supply the sector. Results suggest that by 2030, 2.5–4.5GW of domestic offshore wind development could create between 11,424 and 20,563 supply chain jobs and generate between €763 m and €1.4bn in gross value added. This is the first study to estimate domestic GVA potential for the sector.  相似文献   
6.
Gaseous emissions from the fluidised bed combustion of chickenlitter were monitored and recorded. Emission data was used tocreate a dispersion model for a proposed site on a poultry farmin Limerick, Ireland. Variables within the combustion unit notonly influenced combustion but also emission levels ofpollutants such as SO2 and NOx. CO emissions decreased withuse of the correct ratio between fluidising and secondary air,the staging of secondary air and the degree of turbulence withwhich the secondary air is introduced. Dispersion modelling ofactual combustion at a proposed poultry unit predicted thatground level concentrations for the set of emissions data wouldbe below the limits and guidelines set by air quality standards.This was true for both and line source. Line sourceconcentration levels were less than those for point source.  相似文献   
7.
8.
9.
Antimicrobial agents in the environment are a cause for concern. Antimicrobial drug residues and their metabolites reach the aquatic and terrestrial environment primarily through wastewater treatment plants (WWTP). In addition to the potential direct negative health and environmental effects, there is potential for the development of antimicrobial-resistant bacteria. Residue levels below the minimum inhibitory concentration for a bacterial species can be important in selection of resistance. There is uncertainty associated with resistance formation during WWTP processing. A meta-analysis study was carried out to analyse the effect of WWTP processing on the levels of antimicrobial-resistant bacteria within bacterial populations. An analysis of publications relating to multiple antimicrobial-resistant (MAR) bacteria (n?=?61), single antimicrobial-resistant (SAR) E. coli (n?=?81) and quinolone/fluoroquinolone-resistant (FR) bacteria (n?=?19) was carried out. The odds-ratio (OR) of MAR (OR?=?1.60, p?<?0.01), SAR (OR?=?1.33, p?<?0.01) and FR (OR?=?1.19, p?<?0.01) bacteria was determined. The results infer that WWTP processing results in an increase in the proportion of resistant bacteria in effluent, even though the overall bacterial population may have reduced (i.e. a reduction in total bacterial numbers but an increase in the percentage of resistant bacteria). The results support the need for further research into the development of antimicrobial-resistant strains and possible selective pressures operating in WWTPs.  相似文献   
10.
Habitat Assessment of Non-Wadeable Rivers in Michigan   总被引:1,自引:0,他引:1  
Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order ≥5, drainage area ≥1600 km2, mainstem lengths ≥100 km, and mean annual discharge ≥15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000–2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and excellent (1). Habitat variables retained in the NWHI differ from several used in wadeable streams, and place greater emphasis on known characteristic features of larger rivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号